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Abstract

We study the second quantization of field theory ongtfeformed fuzzy sphere fagr € R. This
is performed using a path integral over the modes, which generate a quasi-associative algebra. The
resulting models have a manifdéf(su2)) symmetry with a smooth limg — 1, and satisfy pos-
itivity and twisted bosonic symmetry properties. A systematic way to calcutat@int correlators
in perturbation theory is given. As examples, the 4-point correlator for a free scalar field theory and
the planar contribution to the tadpole diagrampththeory are computed. The case of gauge fields
is also discussed, as well as an operator formulation of scalar field theopyinl2dimensions.
An alternative, essentially equivalent approach using associative techniques only is also presented.
The proposed framework is not restricted to two dimensions.
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1. Introduction

The idea of studying field theory aprdeformed spaces has been pursued since their
appearance more than 10 years ago. While much work has been done on the level of first
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gquantization (see e.1-8] and references therein), the second quantization has proved
to be difficult. The main problem is perhaps the apparent incompatibility between the
symmetrization postulate of quantum field theory (QFT), and the fact that quantum groups
are naturally associated with the braid group rather than the symmetric group. One could of
course consider theories with generalized statistics; howeyedéformation is considered
as atrue “deformation” of ordinary space, then it should be possible to define models with a
smooth limity — 1. In particular, the number of degrees of freedom should be independent
of ¢g. The goal of the present paper is to defing-deformed QFT which is essentially
bosonic, and has a smooth lingit— 1.

In our previous worl1], we studied in detail field theory on thedeformed fuzzy spheres
S? y atthe first-quantized level. The sphe@sN are precisely the “discrete series” of Po-
dlqés spheref9] if ¢ € R. This space is particularly well suited to attack the problem of
second quantization, because there is only a finite number of modes. Therefore, all consid-
erations can be done on a purely algebraic level, and are essentially rigorous. The methods
we shall develop here are, however, not restricted to that case, but should generalize imme-
diately to othegy-deformed spaces, at least on a formal level. There will be complications,
of course, if the number of modes is infinite.

To understand the problem, consider scalar fields, which are eIem)e&tsSjN. A
typical action can have the form

1
S[y] = —/82 SYAY + Ay, (1.1)

q,

whereA is the Laplaciafl]. Such actions are invariant under the quantum gigusu2))
of rotations, and they are redly']* = S[v/]. They define a first-quantized Euclidean scalar
field theory on they-deformed fuzzy sphere.

We want to study the second quantization of these models. On the undeformed fuzzy
sphere, this is fairly straightforwaifd0,11] The fields can be expanded in terms of irre-
ducible representations 8Q(3)

V) =Y Ykax)a" (1.2)
K.,n

with coefficientsa®” e C. The above actions then become polynomials in the variables
a®-" which are invariant unde8Q(3), and the “path integral” is naturally defined as the
product of the ordinary integrals over the coefficiemfs™. This defines a QFT which has
a SQ(3) rotation symmetry because the path integral is invariant.

In the g-deformed case, this is not so easy. The reason is that the coeffigfefitin
(1.2)must be considered as representations,asu(2)) in order to have such a symmetry
at the quantum level. This implies that they cannot be ordinary complex numbers, because a
commutative algebra is not consistent with the actiotrgfsu(2)), whose coproduct is not
cocommutative. Therefore, an ordinary integral over commutative naddésvould violate
U, (su(2)) invariance at the quantum level. On the other hand, no associative algebra with
generatora X" is known (except for some simple representations) which is both covariant
underlU, (su2)) and has the same Poincare series as classically, i.e. the dimension of the
space of polynomials at a given degree is the same as in the undeformed case. The latter
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is an essential physical requirement at least for low energies, in order to have the correct
number of degrees of freedom, and is usually encoded in a symmetrization postulate. It
means that the “amount of information” contained in thpoint functions should be the
same as fog = 1. These issues will be discussed on a more formal lev@tation 5While

some proposals have been given in the literatii?el 3] how to define QFT on spaces with
gquantum group symmetry, none of them seems to satisfies all these requirements.

One possible way out has been suggestétidiy where it was shown that a symmetriza-
tion can be achieved using a Drinfel’d twist, at least in any givgrarticle sector. Roughly
speaking, the Drinfel’d twist relates the tensor product of representations of quantum groups
to the tensor product of undeformed ones, and hence essentially allows to use the usual com-
pletely symmetric Hilbert space. The problem remained, however, how to treat sectors with
different particle number simultaneously, which is essential for a QFT, and how to handle
the Drinfel’d twists which are very difficult to calculate.

We present here a formalism which solves these problems, by defining a star product of
the modes:X-" which is covariant under the quantum group, and in the limit- 1 re-
duces to the commutative algebra of functions inifi¢ . This algebra is quasi-associative,
but satisfies all the requirements discussed above. In particular, the number of independent
polynomials in thezX " is the same as usual. One can then define an invariant path integral,
which yields a consistent and physically reasonable definition of a second-quantized field
theory with a quantum group symmetry. In particular, the “correlation functions” will sat-
isfy invariance, hermiticity, positivity and symmetry properties. An essentially equivalent
formulation in terms of a slightly extended associative algebra will be presented as well,
based on constructions by Fidf]. It turns out to be related to the general considerations
in [16]. The appearance of quasi-associative algebras is also consistent with results in the
context of D-branes on WZW modeld.7,18].

Our considerations are not restricted to two dimensions, and should be applicable to other
spaces with quantum group symmetry as well. The necessary mathematical tools will be
developed irSections 2—4After discussing the definition and basic properties of QFT on
Sij in Section Swe derive formulas to calculatepoint functions in perturbation theory,

and find an analog of Wick’s theorem. All diagram Ny are of course finite, and vacuum
diagrams turn out to cancel a usual. The resulting models can also be interpreted as field
theories on the undeformed fuzzy sphere, with slightly “non-local” interactions.

As applications of the general method, we consider first the case of a free scalar field
theory, and calculate the 4-point functions. The tadpole diagramddmaodel is studied
as well, and turns out to be linearly divergentds— oo. We then discuss two possible
quantizations of gauge models, and finally consider scalar field theﬂg{ Qrwith an extra
time.

We should stress that our approach is quite conservative, as it aims to find a “deformation”
of standard QFT in a rather strict sense, with ordinary statistics. Of course on can imagine
other, less conventional approaches, such as the di@jnMoreover, we only consider
the casey € R in this paper. It should be possible to modify our methods so that the case
of ¢ being a root of unity can also be covered. Then QFT on more realistic spaces such
as four-dimensional quantum Anti-de Sitter spf® could be considered as well. There,
the number of modes as well as the dimensions of the relevant representations are finite at
roots of unity, as in the present paper.
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2. Some mathematical background: Drinfel’d twists

We first review some mathematical results which are the basis of the later consider-
ations. In order to avoid confusions, the language will be quite formal initially. To a
given finite-dimensional simple Lie algebga(for our purpose jussu(2)), one can asso-
ciate two Hopf algebraf20-22} the usual(U (g)[[2]], m, €, A, S), and theg-deformed
(Uq(g), mg, &4, Ag, Sg). Here U(g) is the universal enveloping algebr&,(g) is the
g-deformed universal enveloping algebra, ait)[[#]] are the formal power series in
h with coefficients inU (g). The symbol

g=¢

is considered formal for now. Then a well-known theorem by Drinfel'd (Proposition 3.16
in [23]) states that there exists an algebra isomorphism

¢ 1 Uqg(8) > UIlA]] (2.1)
and a ‘twist’, i.e. an element
F=F1®F2€UIlh]l ® UIlAll
(in a Sweedler notation, where a sum is implicitly understood) satisfying
(e@IDF =1=(id® e)F, (2.2)
F=1®1+o(h), (2.3)

which relates these two Hopf algeliva(g) andU (g)[[ 1] as follows: if 7~ = Frlo 7t
is the inversé of F, then

p(mg) =mo (¢ ®¢), (2.4)
6, =co00, (2.5)
9(Sy(u)) =y S(pu))y. (2.6)
o(S; W) = y'S(@w)y' ™, 2.7)
(@ ® P)Ag(u) = FA(p)F (2.8)
(0 ® PR = Farq'?F 1, (2.9)

for anyu € U,(g). Here,t := A(C) —1® C — C ® lis the canonical invariant element
inU(g) ® U(g), C is the quadratic Casimir, and

y =SFHFEY Yy =FRsh, yl=FRSFR =15y,
y = sFEhF =5y (2.10)

1 It exists as a formal power series becausg2ad).
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Moreover,y ~1y’ is central inU ()[[k]]. The undeformed magsm, ¢, A, S have been
linearly extended fromU(g) to U(g)[[A]]; notice thatS? = 1. F»; is obtained from

F by flipping the tensor product. This kind of notation will be used throughout from
now on. Coassociativity ofA, follows from the fact that the (non-trivial) coasso-
ciator

¢ =[AIdF NF e hle Hide A)F] (2.11)
is U (g)-invariant, i.e.
[, APw)] =0

foru € U(g). HereA®@ denotes the usual two-fold coproduct.

In the present paper, we only consider finite-dimensional representations, i.e. operator
algebras rather than the abstract ones. Then the formal parameteft can be replaced by
a real number close to 1, and all statements in this section still hold since the power series
will converge. One could then identify the algebidssu(2)) with U, (su2)) (but not as
coalgebras) via the isomorphisp We will usually keepy explicit, however, in order to
avoid confusions.

It turns out that the twisf is not determined uniquely, but there is some residual “gauge
freedom”[23]

F— FT (2.12)

with an arbitrary symmetri€ e U (g)[[1]]®2 which commutes witi\ (U (g)) and satisfies
(2.2) and (2.3) The symmetry of’ guarantees thakR is unchanged, so th&f remains a
twist from (U ()[[A]], m, &, A, S) to (Uy(q), mq, g4, Ag, Sq). We will take advantage of
this below.

While for the twistF, little is known apart from its existence, one can sHa®j using
results of Kohn¢24] and Drinfel’d[23] that the twists can be chosen such that the following
formula holds:

; —(h/2ni)n12 3 ho (i n2 13 h/2ni
= lim (h/zm)llzp ex __/ de [ 22 (h/27i)t23
¢ x0,y0— 0% {xO P 2mi X0 " X + x—1 yo

=1+ o(h?). (2.13)

Here P denotes the path-ordered exponential. Such twists were called “minimal” by Fiore
[15], who showed that they satisfy the following remarkable relations:

1=FAFI(1® (SF)y). (2.14)
1=(1Q SFy  HF(AF, (2.15)
1=FAFR((SF)yY te1), (2.16)
1= srtenartFt (2.17)

2 We will suppress the multiplication maps from now on.



210 H. Grosse et al./Journal of Geometry and Physics 43 (2002) 205-240
1=AFYF Y/ sF e ), (2.18)
1=(1®y'SFYAF T F L (2.19)

All coproducts here are undeformed. Furthermore, we add the following observation, let
(V;, ») be representations @f(g) and/® e V1 ® V> ® V3 be an invariant tensor, so that
us1® = A@w) s 19 = ¢w)I® foru € U(g). Then the (component-wise) action of

¢ on I is trivial:

¢p1® =19, (2.20)

This follows from(2.13} observe that;» commutes withr,3 in the exponent, because e.g.
(A(C)® 1) can be replaced ly® 1 ® C if acting on invariant tensors. Therefore, the path
ordering becomes trivial an@.20)follows.

Star structure Consider or/ (su2))[[ #]] the (antilinear) star structure

H*=H, X% =XT, (2.21)

with h* = h, sinceg is real. It follows, e.g. from its explicit forrf25] that the algebra map
@ is compatible with this star

)" = o).

It was shown in[26] that using a suitable gauge transformat{@ril2) it is possible to
chooseF such that it is unitary

(*@%)F =F 1L (2.22)

Moreover, it was stated ifil5] without proof that the following stronger statement
holds:

Proposition 2.1. Using a suitable gauge transformati@d.12) it is possible to choose a

twist F which forg € R is both unitary and minimal, so th&2.22)and(2.14)—(2.19hold.
Since this is essential for us, we provide a proofAppendix A

3. Twisted U,(g)-covariant %-product algebras

Let (A4, -, >) be an associativ€/ (g)-module algebra, which means that there exists an
action

U(g) x A— A, (u,a) = uva

which satisfies: > (ab) = (u) > a)(u@) > b) fora, b € A. Here,A(u) = u@g) ® u)
denotes the undeformed coproduct. Using the mép.11) we can then define an action
of U, (g) on A by:

uvga.=oeu)>a, (3.1)
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oruvya; = llj]Tl-j (¢(uw)) in matrix notation. This does not defind/g(g)-module algebra,
because the multiplication is not compatible with the coprodudt gfs). However, one
can define a new multiplication QA as follows:

axb = (Fytea) - (Fyleb) = (F 1o (a@b)) (3.2)
for anya, b € A. Itis well known[27] that (A, %, >,) is now aU, (g)-module algebra:
Uy (axb) =@w) > (Fy ' ea) - (Fyte b)) = (Alp)F Y >a®b)
= (FHe®@)Agw)>a®b) = %(Ag(u) g a ® b)

for u € U,(g). In general, this produck is not associative, but it iguasi-associative
which means that

(axb)kc = (¢p1> @)k ((¢2 > b)Yk (¢3 > ), (3.3)
where

¢:=1®Fid® AFI(ARIDF YF 1oL = UrpUz* (3.4)
with

Ur = (1@ A[(d® A)F] € U)®3,
which satisfies
[6. AP w)] =0

for u € U, (g). All this follows immediately from the definitions. Moreover, the following
simple observation will be very useful:

Lemma3.1. In the above situation
(a%xb)*kc = ak(bkc) (3.5)

if one of the factorg, b, ¢ € A is invariant underU (g). If (A, -) is commutative, then any
elementS € A which is invariant under the action @f (g), u > S = e(u)S, is central in
(A, *,>¢).

Note that invariance of an elememte A underU (g) is the same as invariance under
Uy (&)-

Proof. This follows immediately from(2.2) together with the definition of. To see the
last statement, assume tifails invariant. Then

Ska=(F e S) (Flra)= (t@DF He(S®a)=S-a=a-S=ak$
(3.6)

foranya € A. O
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For actual computations, itis convenient to use a tensor notation as follows: assume that
the element&s; } of Aform arepresentation éf(g). Denotingﬁkt =nu! (qbl)njf (p2)7; (93),
Eq. (3.3)can be written as

(ai%aj)kay = ar*(ax*a,)qsirjit, or (a1kaz)*az = arx(axkaz)di23. (3.7)

The last notation will always imply a matrix multiplication as above.
Conversely, givend, (g)-module algebraA, x, »,), one cantwistitinto & (g)-module
algebra(A, -, ) by

a-b:= (@ {FV) e )k (FP) oy b),

where of course > a = ¢~ 1(u) >4 a. Now if (A, %, >,) was associative, thea, -, ) is
quasi-associative

a-(b-c)=¢e (@ b)-c):=((p11q a) - (2 b)) - (P34 C).

Such a twist was used jfh] to obtain the associative algebra of functions ongfteeformed
fuzzy sphere from the quasi-associative algebra of function®2branes in the&SU(2)
WZW model found in17].

Commutation relations an@®-matrices These twisted algebras have a more intrinsic
characterization, which is much more practical. Consider a commut&tige-module
algebra(A4, -, »), and the associated twistéd (g)-module algebr& A, x,,) as defined
above. Observe that the definiti(®2) is equivalent to

axb=(F{tea) (Fyleb) = (Flteb) - (Filea) = (FIFFD e b ®a)

= (R2>q b)k(Rivg a), (3.8)
where we define
Ri= ('@ HFnF 1 =Ry (3.9)
In a given representation, this can be written as
aikaj = ak*alﬁ,}jk, or aikaz = axkxaiR12, (3.10)
where
Ry = (2} @ 7)(R). (3.11)

Now there is no more reference to the “origin&l{g)-covariant algebra structur®. does
not satisfy the quantum Yang—Baxter equation in general, which reflects the non-associativity
of the x product. However, it does satisfy

RRo1 =1, (3.12)
R12.3 = (Ag ® DR = ¢315R13p135R23p123. (3.13)
R1.23 = (1® APR = p31R136215R 126155 (3.14)

ascan be verified easily. This means that we are working with the quasi-triangular quasi-Hopf
algebrg[23] (U, (g), Ay, ¢, R), which is obtained from the ordinary Hopf algelgta(g),
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A, 1, 1) by the Drinfel'd twistF. In practice, it is much easier to work wifR than with
F.Forg € R, one can in fact write

R = RVRaR1z . (3.15)

whereR is the usual universak-matrix (2.9) of U, (g), which does satisfy the quantum
Yang—Baxter equation. The prody@®»1R12) could moreover be expressed in terms of the
Drinfel’d—Casimir

v= (SRR~ ", (3.16)
which is central inU,(g) and satisfiesA(v) = (R21R12)~ v ® v. The square root is

well-defined on all the representations which we consider, sinseeal.
Twisted Heisenberg algebraSonsider thd/ (g)-module algebraAy, -, ») with gener-

atorsa; anda; in some given irreducible representation and commutation relations

[a).all=0=lanal, [al a]= (g, (3.17)

where(g.)j is the (unique) invariant tensor in the given representatioti @f). We can
twist (Ay, -,>) as above, and obtain thg, (g)-module algebrag Ay, %, >,). The new
commutation relations among the generators can be evaluated easily:

Tttt T3

aikar = az*alﬁlz, a, *a, = a,*a, Riz,

aI*az =g12+ az*airﬁlz. (3.18)
Here

gnm = (8c)rs7ty (Fy 70, (Fy ) (3.19)

is the unique rank 2 tensor which is invariant under the actjoot U, (g). A similar relation
holds for the invariant tensor with upper indices:

¢ = n(Fon! (Fa)es, (3.20)
which satisfieg""gn = 5. In particular, it follows that
axa = al*azglz =a - az(gc)lz, (3.21)

therefore, the invariant bilinears remain undeformed. This is independent of the algebra of
the generators;.
It is sometimes convenient to use eleformed antisymmetriz§t 4]

PL=Fro(1— 8 F 3 = (1— PR)1

acting on the tensor product of two identical representations, whésehe flip operator.
Then the commutation relatior3.10)can be written as:

arkxaz P, = 0. (3.22)

For products of three generators, the following relations holds:
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Lemma 3.2.
ark(azkaz) = (apkaz)*ka1R1, 23, (3.23)
aI*(az*aggzg’) = 2a; + (a2*a3g23)*af, (3.24)
a]-_r*(az*agpz_?’) = (az*a3P2_3)*aI7§,1,(23. (3.25)

The proof is inAppendix A
3.1. Integration

From now on we specialize = su(2), even though much of the following holds more
generally. Let{a;} be a basis of the spii representation ot/ (su2)) with integerk,
and consider the (free) commutative algeldrgenerated by these variables. lgbtbe the
(real, symmetric) invariant tensor, so thata = aiajglc! is invariant undet/ (sw2)), and
¢l o — 5k We now impose o the star structure

af = gigaj, (3.26)

so that.A4 can be interpreted as the algebra of complex-valued functiorig?6r1; in
particularg - a is real. Then the usual integral &*#X 1 defines a functional on (the subset
of integrable functions in a suitable completion gf) which satisfies

/d2K+lau>f =e(u)/d2K+1af, (/ d2K+1af> = fdz’(”af* (3.27)

foru € U(su2)) and integrablef € .A. More general invariant functionals ofi can be
defined as:

(f) = / d*+ap(a - a) f (3.28)

for f € A, wherep is a suitable real weight function. They are invariant, real and
positive:

(ue f)=ew)(f), (N =, (f*f)=0 (3.29)
foranyu € U(su?2) and f € A. As usual, one can then define a Hilbert space of
square-(weight-) integrable functions by

g i= (') = [ @ Hapa-arfs. (3.30)

Now consider the twisted/, (su(2))-module algebrd.A, x, ;) defined in the previous
section. We want to find an integral gtwhich is invariant under the actiery of U, (su(2)).
Formally, this is very easy: since tpaceA is unchanged by the twisting, we can simply
use the classical integral again, and verify invariance

/ d**laus, f= / d*lagu) e f = e(p)) / d**laf = e, (u) / d*+laf.
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Notice that the algebra structure.dfdoes not enter here at all. The compatibility with the
reality structure will be discussed in the next section.

Of course we have to restrict to certain classes of integrable functions. However, this is not
too hard in the cases of interest. Consider e.g., the space of Gaussian functions, i.e. functions
of the form P (a;) e ¢(@% with suitable (polynomial, sayP(g;). Using(3.21) this is the
same as the space of Gaussian functions in the sense of the star pPp@uge <@ This
will imply that all integrals occurring in perturbation theory are well-defined. Furthermore,
one can obtain a twisted sphere by imposing the relatien = ¢ -a = R2. On this sphere,
the integral is well-defined for any polynomial functions. The integral over the twisted
R2K+1 can hence be calculated by first integrating over the sphere and then over the radius.
Finally, we point out the following obvious fact:

(P(a)) = (Po(a)), (3.31)

wherePy(a) € Ais the singlet part of the decomposition of the polynonfiégt) under the
actions, of U, (su(2)), or equivalently under the actienof U (su(2)).

4. An U, (su(2))-covariant operator formalism

In the previous section, we defined quasi-associative algebras of functions on arbitrary

representatlon spaces bf, (su(2)). We will apply this to the coefficients of the fields on

~ later. However, there is an alternative approach within the framework of ordinary
operators and representations, which is essentially equivalent for our purpose. We shall
follow here closely the constructions|ib5]. It seems that both approaches have their own
advantages, therefore, we want to discuss them both.

We first recall the notion of the semidirect product (cross-product) algebra, which is
useful here. LetA, -, ) be an associative (sw2))-module algebra. Theti (su2)) x A
is the vector spacel ® U (sw2)), equipped with the structure of an associative algebra
defined byua = (u(1) > a)u(2). Hereu ) ® u () is the undeformed coproduct of(su2)).

In the following, we shall be interested in representationg e¥hich have a “vacuum”
vector) such that all elements can be written in the fady i.e. by acting withA4 on the
vacuum vector. In particular, we will denote witty the free left4-module A) which has
a vector space is equal t4. This will be called the “left vacuum representation” (or left
regular representation). Now ahysuch representation of can naturally be viewed as a
representation o/ (su2)) x A4, if one declares the vacuum vectato be a singlet under

U(su2)),
u) = e(u)),

andu > (a)) = (u>a)). One can then verify the relations Gf(su2)) x A.
Inspired by[15], we define for any: € A the element

=(F e a)Ft e Usu2) x A. (4.1)

3 Provided the kernel of the representation is invariant uitiesu(2)), which we shall assume.
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Using the definition of the Drinfel'd twist, it is immediate to verify the following properties:
a) =a), aby = (axb)), (4.2)
where(axb) is the twisted multiplication otd defined in(3.2). More generally,
a1Gz - - - ax) = (apk(agk (- - - ag—1kag) - -))) (4.3)

for anya; € A. Hence the elements realize the twisted produ¢B.2) on A, with this
particular bracketing. If € A is a singlet, or equivalently[ U (su2))] = 0in U (Su2)) x
A, then

é=c. (4.4)

If in addition the algebrad is commutative, thed is central inU (sw2)) x A. Moreover,
the new variableg; are automatically covariant under the quantum groygu2)), with
theg-deformed coproduct, denoting

i = @) € U(W2)
for u e U,;(sw?2)), one easily verifies

G = i1 >4 ailp, (4.5)
whereu; ® up denotes thg-deformed coproduct. In particular,

Qa) = uvya) =iioga),  Aab) = (Tega)(uz ey b)).

Therefore,U, (su(2)) acts correctly on thé-variables in the left vacuum representation.

More explicitly, assume thad is generated (as an algebra) by generatotansforming in

the spink representation of U (sw2)), so thatug, = ajjTl-J (u@))ue). Then(4.5)becomes
ha; = ajn! (y)iz. (4.6)

In general, the generatodis will not satisfy closed commutation relations, even if the
do. However, if fi;, a;] = 0, then one can verify that (df15])

aiaj = ara Ry, (4.7)
where
Ry = (1} ® 7] ® id)(Pr13R12015) € U(SUD)). (4.8)

Again, this involves only the coassociator and the univeRsahatrix. Such relations for
field operators were already proposedi6] on general grounds; here, they follow from
the definition(4.1). In the case of several variables, one finds

aibj = brayR. (4.9)
Indeed, no closed quadratic commutation relations for deformed spaces of function with

generatorsg; in arbitrary representations of, (su2)) are known, which has been a major
obstacle for defining QFT’s ajtdeformed spaces. In the present approach, the geneiators
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satisfy quadratic commutation relations which close only in the bigger alg&ist2)) x A.
In general, they are not easy to work with. However, some simplifications occur if we use
minimal twistsF as defined irSection 2 as was observed by Fiof&5]:

Proposition 4.1. For minimal twistsF as in(2.13) the following relation holds

gij&l‘flj = gEa,-aj. (4.10)
Here
gV = ml (Forl (Fag = ¢ (), (4.12)

wherey’ is defined in(2.10) In particular if A is abelian, this implies that*a ;é is central
inU(su?)) x A.

We include a short proof idppendix Afor convenience. This will be very useful to
define a quantized field theory. From now on, we will always assume that the twists are
minimal.

Derivatives Let .4 be again the free commutative algebra with generatons the spin
K representation ot/ (su(2)), and consider the left vacuum representation = A) of
U(su?2)) x A. Letd; be the (classical) derivatives, which act as usual on the functions in
A. They can be considered as operators acting gnand as such they satisfy the relations
of the classical Heisenberg algebda;; = gi‘j‘ + a;0;. Now define

b = (Frte F (4.12)

which is an operator acting ol = .A); in particular, it satisfied;) = 0. Then the
following relations holds:

Proposition 4.2. For minimal F as in(2.13) the operatorsy;, éj acting on the left vacuum
representation satisfy

i (¢¥ajan) = 24; + (%a,a0)d;, (4.13)

é,'flj = gj +&k519%!}‘. (4.14)

The proof is given inAppendix A the second relatiofd.14)is again very close to a
result (Proposition 6) ifil5], and it holds in fact irU (su2)) x A. Of course, the brackets
in (4.13)were just inserted for better readability, unlikeliemma 3.2where they were
essential. If we have algebras with several variables in the same representation, then e.g.

oy (&b jar) = bi + (&%bar)d, (4.15)

holds, in self-explanatory notation.

One advantage of this approach compared to the quasi-associative formalism in the pre-
vious section is that the concept of a star is clear, induced from Hilbert space theory. This
will be explained next.
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4.1. Reality structure

Even though the results of this section are more general, we assume for simplicity that
A is the free commutative algebra generated by the elemeptsvhich transform in
the spink representation o/ (su2)) with integerk, i.e. the algebra of complex-valued
functions onR25+1 (or products thereof). Then the classical integral defines an invariant
positive functional on4 which satisfieq3.29) andV 4 becomes a Hilbert spa¢g.30)
(after factoring out a null space if necessary). Hence we can calculate the operator adjoint
of the generators of this algebra. By construction,

w
a; = 8caj,

whereg! is the invariant tensor, normalized such thg = §. As discussed above,
V 4 is a representation of the semidirect prodli¢su(2)) x A, in particular it is a unitary
representation af’ (su2)). Hence the star on the generatordqbu(2)) is

H* = H, X+ = xF,

Now one can simply calculate the star of the twisted variables U(su2)) x A. The
result is as expected.

Proposition 4.3. If F is a minimal unitary twist as ifProposition 2.1then the adjoint of
the operatotg; acting on the left vacuum representatid is

ar = giig,j_ (4.16)
This is proved iMppendix A and it was already found [d5]. Itis straightforward to extend
these results to the case of several varialit}(iﬁé5 p'P. .. indifferent representations, using
a common vacuuri The star structure is always of the fo(¢h3).

If A is the algebra of functions oR%A+1, we have seen above that the left vacuum

representatiomd) is also a representation of the Heisenberg algetgawith generators
a;, 9;. Again we can calculate the operator adjoints, and the result is

8l»*=—g28j, éi*z—gijéj.

Of course, all these statements are on a formal level, ignoring operator-technical subtleties.

4.2. Relation with the quasi-associatikeproduct

Finally, we make a simple but useful observation, which provides the connection of the
operator approach in this section with the quasi-associative appro&eltiddn 3 Observe
first that an invariant (real, positiv@.29) functional() on A extends trivially as a (real,
positive) functional orU (su2)) x A, by evaluating the generatorsG{su2)) on the left
(or right) of A with the counit. Now for any tensdrt i of U,(su?2)), denote

1(a) == I"""%G@;, ---a;, € U(SW2)) x A,
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and
L(a) = 1"tk K (- Kk(aj,_,*ka;) ) € A (4.17)

Then the following holds:

Lemma4.4.

1) If I = I'1k js an invariant tensor o/, (su2)), thenI (a) as defined above commutes
with u € U, (Su2)),

[, 1(@] =0 in USU2) x A (4.18)

2) Lets) € A) be invariant, i.eu - s) = g,(u)s), and [, ..., J be invariant tensors of
U, (su2)). Then

I@)---J@)s)=L(a)k---%J.(a)s).

3) Let/, J be invariant, and? = Pt be an arbitrary tensor ot/, (su(2)). Denote with
Py the trivial component of P under the action @f (su2)). Then for any invariant
functional{) on A4,

(I(@)---J(@P (@)= (@) J(@)Po(@)) = (I(a)k - - k] (a)(Po)«(a))
= (L(a)k - k()% P,(a)). (4.19)

Moreover if A is abelian, then the (a), J(a), etc. can be considered as central in an
expression of this form, e.g.

(I@)---J(@P(a)) =(P@)l@---J@)=(P@y)J@--- 1))

and so on

The prooffollows easily fron.3) and (4.5andLemma 3.1The stars between the invariant
polynomialsi,(a), ..., J.(a) are of course trivial, and no brackets are needed.

5. Twisted Euclidean QFT

These tools can now be applied to our problem of quantizing fields op-tleformed
fuzzy spheraS‘;N. Most of the discussion is not restricted to this space, but it is on a
much more rigorous level there because the number of modes is finite. We will present two
approaches, the first based on twistegroducts as defined iBection 3 and the second
using an operator formalism as 8ection 4 Both have their own merits which seem to
justify presenting them both. Their equivalence will follow fraremma 4.4

First, we discuss some basic requirements for a QFT on spaces with quantum group
symmetry. Consider a scalar field, and expand it in its modes as

W(x) =) Yrax)a®". (5.1)

K,n
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Here they g ,(x) € Sg_N are a basis of the spiki representation o/, (su2)),
Usq YK n(x) =Yg m@)m,) (u) (5.2)
and the coefficientsX-” transform in the dual (contragredient) representatidﬁchfSL(Z)),
us,a® " = 7 (Suya®-m. (5.3)

Itis important to distinguish the Hopf algebras which act on the coefficightsand on the
functionsy g, (x), respectively. The Hopf algebfa7 (su2)) is obtained fronU, (su(2)) by
flipping the coproduct and using the opposite antipfée S~1. In particular, theR-matrix
and the invariant tensors are also flipped:

Zhn= 8 (5.4)

Wheregr{(m is the invariant tensor df7q (su(2)). The reason for this will become clear soon.
Moreover, it is sometimes convenient to express the contragredient generators in terms of
“ordinary” ones,

ag.n = gma™ " (5.5)
ThenU, (su2)) acts as
USqag n = ag mm, ().

We assume that the coefficient$ " generate some algebrh This is not necessarily the
algebra of field operators, which in fact would not be appropriate in the Euclidean case even
for ¢ = 1. Rather,A could be the algebra of coordinate functions on configuration space
(space of modes) far = 1, and an analog thereof fgr# 1. The fields¥ (x) can then be
viewed as “algebra-valued distributions” in analogy to usual field theory, by defining

w[f] 1=f2 T(x)f(x) e A
82y
for f(x) € Sj’N. Then the covariance propertigs2) and (5.3rould be stated as:
us [ f1=¥urvq f1, (5.6)

using the fact thaf (u >y g = [ f(S@w) > g).
Our goal is to define some kind of correlation functions of the form

(WAYILL] -] eC (5.7)
foranyfi, ..., fr € 35,1\/: inanalogy to the undeformed case. After “Fourier transformation”
(5.1), this amounts to defining objects

GKl,nl;Kz,nz;...;Kk,nk = (aKl,nlaKz,ng L. aKk,nk> — (P(a)), (58)

whereP (a) will denote some polynomial in theX-" from now on, perhaps by some kind
of a“path integral( P (a)) = (1/N) [ Da e SI¥1 p(a). We require that they should satisfy
at least the following properties, to be made more precise later:
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(1) Covariance
(usq P(a)) = equ)(P(a)), (5.9)

which means that theX1.71:K2.n2:-:Kink gre invariant tensors df,, (su2)),
(2) Hermiticity:

(P(a))" = (P*(a)) (5.10)

for a suitable involutiorx on A,
(3) Positivity:

(P(a)*P(a)) > 0, (5.11)
(4) Symmetryunder permutations of the fields, in a suitable sense discussed below.

This will be our heuristic “working definition” of a quantum group covariant Euclidean
QFT.

In particular, the word “symmetry” in (4) needs some explanation. The main purpose of a
symmetrization property is that it puts a restriction on the number of degrees of freedom in
the model, which inthe limg — 1 should agree with the undeformed case. More precisely,
the amount of information contained in the correlation functi@8)should be the same as
forg = 1, i.e. the Poincaré seriesdfshould be the same. This means that the polynomials
inthea® " can be ordered as usual, i.e. they satisfy some kind of “Poincaré—Birkhoff—Witt”
property. This is what we mean with “symmetry” in (4). In more physical terms, it implies
the statistical properties of bosohs.

However, it is far from trivial how to impose such a “symmetry” on tensors which are
invariant under a quantum group. Ordinary symmetry is certainly not consistent with covari-
ance under a quantum group. One might be tempted to replace “symmetry” by some kind of
invariance under the braid group which is naturally associated to any quantum group. This
group is generally much bigger than the group of permutations, however, and such a re-
quirement is qualitatively different and leaves fewer degrees of freedom. The properties (3)
and (4) are indeed very non-trivial requirements for a QFT with a quantum group spacetime
symmetry, and they are not satisfied in the proposals that have been given up to now, to the
knowledge of the authors.

Covariance (1) suggests that the algedrgenerated by theX " is aU,(su2))-module
algebra. This implies immediately thdtcannot be commutative because the coproduct of
U, (su(2)) is not cocommutative. The same conclusion can be reached by contemplating the
meaning of invariance of an actigifiw], which will be clarified below. One could even say
that a second quantization is required by consistency. As a further guiding line, the above
properties (1)—(4) should be verified easily in a “free” field theory.

In general, there is no obvious candidate for an associative algebatisfying all these
requirements. We will construct a suitable quasi-associative algbhsa star-deformation
ofthe algebra of functions on configuration space along the linescfon 3which satisfies
these requirements. Our approach is rather general and should be applicable in a more
general context, such as for higher-dimensional theories. Quasi-associativity implies that

4 We do not consider fermions here.
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the correlation function&.7) make sense only after specifying the order in which the fields
should be multiplied (by explicitly putting brackets), however, different ways of bracketing
are always related by a unitary transformation. Moreover, the correct number of degrees
of freedom is guaranteed by construction. We will then define QFTs which satisfy the
above requirements using a path integral over the figl(l9, i.e. over the modes®-". An
associative approach will also be presentef8éation 5.2which is essentially equivalent.

5.1. Star-product approach

The essential step is as follows. Using the m4Pp. 1), the coefficienta X" transform also
under the spirk representation o/ (su2)), viausa*-" = go*l(u)San’”. Hence we can
consider the usual commutative algebt& of functions onR?5+1 generated by theX ",
and view it as a left/ (su(2))-module algebrgAX , -, 5). As explained irSection 3we can
then obtain fromitthe Ie]i/q (su2))-module algebradX , x, &4), With multiplicationx as
defined in(3.2). More generally, we consider the Ié?’g (su2))-module algebraA, *, 5,)
where A = ®f,¥=0AK . Notice that the twistF corresponding to the reversed coproduct
must be used here, which is simpli> = F»1. The reality issues will be discussed in
Section 5.2

Invariant actions Consider the following candidate for an invariant action

Sint[¥] = /2 V() * (W (x) k¥ (x)). (5.12)

Assuming that the functions oﬁ;N commute with the coefficientsy], aX"] = 0, this
can be written as:

Sint[¥] =/2 VOV )W gr 1 (0)aX " de (@ " xea X"

_ ]<3)

K, K, K"l
KK Krnmi@ k(@ ka0 € A (5.13)

Here II((S)K, K"nm.l fsiN Yk Vk.mW¥kr, IS by construction an invariant tensor of
Uy (su(2)),
3
I o m T )T W27 (3) = g I g - (5.14)

We have omitted the labels on the various representatlons. Henpe] is indeed an
invariant element of4:

3
usq Sint[¥] = II({ K',K";n,m,

=&q () Sint[¥]

using(5.14) whereu; ® uz ® u3 is the twofold coproduct o U, (su2)); notice that
the antipode reverses the coproduct. This is the reason for l]’gi(mg(Z)).

T Sup) ! Sus)m! (Suz)a® " x @k a1

5 Note that the brackets are actually not necessary here beca®®f For higher-order terms they are
essential, however.
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Ingeneral, our action§{¥ ] will be polynomials inA4, and we shall only consider invariant
actions,

uS, S[¥] = e,(w)S[¥] € A (5.15)

for u € U,(su?2)). It is important to note that byemma 3.1 the star product of any
such invariant actions is commutative and associative, even though the full algebra of the
coefficients(A, %) is not. Moreover, we only consider actions which are obtained using an
integral overS[i v asin(5.12) which we shall refer to as “local”.

In particular, consider the quadratic action

Solw] = / W () %W (1),
52

q.N

which can be rewritten as

N
Salv] = fs L VKa @Yk m@a " ka®m =% 7 gl ak ek
q.N =0

N
= g xa®m, (5.16)
K=0
Here we assumed that the bagig ,, (x) is normalized such that
/32 Vi OV K m (X) = Sk k' G- (5.17)
q.N

This action is of course invarianis, S2[¥] = &,(u)S2[¥]. Moreover, the invariant
quadratic actions agree precisely with the classical ones. Indeed, the most general invariant
quadratic action has the form

N N
1 1
Streel V] = E E DKgfnﬂK’n*aK’m = E E DK(gLI-()nmaK’n -akom (5.18)
K=0 K=0

using(3.21) for someDk € C. This will allow to derive Feynman rules from Gaussian
integrals as usual.

Quantization path integral We will define the quantization by a (configuration space)
path integral, i.e. some kind of integration over the possible values of the coefficfefits
This integral should be invariant undég (su2)). Following Section 3.1we considetdX
as the vector space of complex-valued functionsRsfit1, and use the usual classical
integral oveiR2X+1, Recall that the algebra structure4f does not enter here at all. The
same approach was used19] to define the quantization of the undeformed fuzzy sphere,
and an analogous approach is usually taken on spaces with a star 2&judbtice thatk
is an integer, since we do not consider fermionic fields here. Explicitly, 14K £ be
the integral of an elemernt € AX overR?(+1. Itis invariant under the action &f, (su2))

(or equivalently undet/ (su(2))) as discussed iBection 3.1

/d2K+1aKw;qf _ gq(u)/d2K+laKf.
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Now we define
[ postr = [ T]a* 4 s
K

where f[¥] e A is any integrable function (in the usual sense) of the variabfeg.
This will be our path integral, which is by construction invariant under the actjoaf
U, (SU2)).

Correlation functions can now be defined as functionals of “bracketed polynomials”
P,(a) = aXv"1x (aK2m2% (- . . xa X)) in the field coefficients by

DY e S¥IP, (a)
(Pu(a)) = ! -
[ Dw eSI¥]

(5.19)

This is natural, because all invariant actisfig’] commute with the generatoad ", Strictly
speaking there should be a factotfilin front of the action, which we shall omit. In fact
there are now three different “quantization” parametkisas the usual meaning, whilé
andg — ¢! determines a quantization or deformation of space.

Invariance of the actio§[¥] € A implies that

(uby Pi(a)) = eq4(u)(Pu(a)), (5.20)
and therefore
(Pu(a)) = ((Po)x(a)), (5.21)

where Py is the singlet part of the polynomidt, as inLemma 4.4 These are the desired
invariance properties, and they would not hold if tHfe” were commuting variables. By
construction, the number of independent modes of a polynaPial) with given degree is

the same as fgf = 1. One can in fact order them, using quasi-associativity together with
the commutation relation®.10)which of course also hold under the integral:

(Pul@)*((ai%aj — apkaR{) % 0u(a))) = 0 (5.22)

for any polynomialsP,(a), Q.(a) € A. This can also be verified using the perturbative
formula (5.27) below. Therefore, the symmetry requirement (4)Sefction 5is satisfied.
Moreover, the following cyclic property holds:

(ai% P,(a)) = (P.(a)%a;)DF, DF = g (5.23)

foranyP,(a). Thisfollows using5.21)and the well-known cyclic property of tikedeformed
invariant tensogi;.

In general, the use of quasi-associative algebras for QFT is less radical than one might
think, and it is consistent with results 7] on boundary correlation functions in BCFT.
Before addressing the issue of reality, we develop some tools to actually calculate such
correlation functions in perturbation theory.

Currents and generating functiona®ne can now introduce the usual tools of QFT. We
introduce (external) currents(x) by

J) =Y Ykax)i*n, (5.24)

K,n
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where the new generatoj&-" are included into thef]q (su2))-module algebrad, again
by the twisted produdi3.2). We can then define a generating functional

1
Z[J] — x/ / DY e—S[‘I/]+f U/(X)*J(x)’ (525)

whichis an element ofl butdepends only on the currentvariables. Hére- [ Dy e S,
Note that

/lI/(x)*J(x) =f](x)*W(x),

which follows, e.g. from(5.18) Invariance of the functional integral implies that
usyZ[J] = equ)Z[J] (5.26)

foranyu e 0q (sw?2)), provided the actions§[¥] are invariant.

It is now useful to introduce derivativ@{;" similar to (3.18), which together with the
currents form a twisted (quasi-associative) Heisenberg algebra as explained in the previous
section

K K’ ~K K’y 0K 3sr
djyn*im =Sk k' &m~T Jr *3(j)s Ram

By a calculation analogous {8.24) it follows that

a(’j;” (/ !I/(x)*J(x)) =afn 4 (/ W(x)*](x)) a{j;”.

Recall that it is not necessary to put a star if one of the factors is a singlet.
This is exactly what we need. We conclude immediately tﬁég”[, exp([ ¥*xJ)] =

a®mexp([ w*J), and by an inductive argument it follows that the correlation functions
(5.19)can be written as

(Pu(@)) = j=0{Pu(3(j)) Z[J])9=0. (5.27)

Here j_o(-- - )s=0 means ordering the derivatives to the right of the currentsthad
settingJ and g to 0. The substitution of derivatives into the bracketed polynorAjal
is well-defined, because the algebra of the generatisshe same as the algebra of the
derivativesd ).

The usual perturbative expansion can now be obtained easily. Consider a quadratic action
of the form

1
Streel¥'] :f ¥ ()% DY (x),
2,2
q.N
whereD is an invariant (e.g. differential) operator 6}511\,, so thatDV¥ (x) = Y Yk »(x)
DyaX" with Dg € C. It then follows as usual that

1 . _
Zired J] 1= N /Dll/ e—Sfree[lI/]+f vk J(x) _ el/Zj J(x)*D 1J(x)_ (5.28)
ree




226 H. Grosse et al./Journal of Geometry and Physics 43 (2002) 205-240

This implies that after writing the full action in the for8{¥] = Sireel¥] + Sint[¥], One
has

1 ' . 1 ’
Z17] = K / Dy eSnl¥] g SredW1+[ ¥ () kT (x) _ Me—smt[a(j)]Zfree[J]>3=0.
(5.29)

This is the starting point for a perturbative evaluation. In the next section, we shall cast this

into a formwhich is even more useful, and show that the “vacuum diagrams” cancel as usual.
Relation with the undeformed ca3#ere is a conceptually simple relation of all the above

models which are invariant undéftgl(su(Z)) with models on the undeformed fuzzy sphere

which are invariant undel/ (su(2)), at the expense of “locality”. First, note that the space

of invariant actiong5.15)is independent af . More explicitly, consider an interaction term

of the form(5.13) If we write down explicitly the definition of thex product of thez X"

variables, then it can be viewed as an interaction terafof variables with a tensor which

is invariant under thandeformed/ (su2)), obtained frorﬂlg)K,’K,,;n,mJ by multiplication

with representations of. In the limitg = 1, thisF becomes trivial. In other words, the

above actions can also be viewed as actions on undeformed fuzzy ﬂ;}”@q’rﬁ, with

interactions which are “non-local” in the sense&jf:l’,v, i.e. they are given by traces of
products of matrices only to the lowest orderin— 1). Upon spelling out thex product
in the correlation function§s.19)as well, they can be considered as ordinary correlation
functions of a slightly non-local field theory cﬁjzl’N, disguised by the transformatidf

In this senseg-deformation simply amounts to some kind of nhon-locality of the interac-
tions. A similar interpretation is well known in the context of field theories on spaces with a
Moyal product28]. The important point is, however, that one can calculate the correlation
functions forg = 1withoutusing the twistF explicitly, using onlyR-matrices and the coas-
sociatorsp, which are much easier to work with. This should makedgraeformed point
of view useful. It is also possible to generalize these results to gtdeformed spaces.

5.2. Associative approach

In order to establish the reality properties of the field theories introduced above, itis easier
to use an alternative formulation, using the resultSedétion 4 The equivalence of the two
formulations will follow from Section 4.2This will also allow to define field operators for
second-quantized models int21 dimensions irSection 6.4

Consider the left vacuum representatidhs= A) of A = @ ¢ AX introduced irSection
4, and define the operatérs

akn = (Ftea®MF e UGsu2) x A (5.30)

acting onA). We can then more or less repeat all the constructions of the previous section
with a*" replaced byi X", omitting thex product. The covariance prope(8.6)of the field

W(x) =Y Yk a(x)ak” (5.31)
K.,n

6 They should not be considered as field operators.
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can now be written in the form
Vuv, f1= uidf[f]gué.

Invariant actions can be obtained by contractingithé with invariant tensors df]q (sw2)),
and satisfy

[u, S[¥]] =0

for’ u e Uq (sw?2)). For example, any actions of the form

S[tff]:/sz %gi/(x)Dq?(x)+mi/(x)q?(x)@(x)

q.N

= Sree[¥] + Sint[¥] € U(su2)) x A

are invariant, wheré is defined as before. Usirgroposition 4.1the quadratic invari-
ant actions again coincide with the undeformed ones. In general, higher-order actions are
elements ofU (su2)) x A but not of A. Nevertheless, as explained $ection 4.2 all
such invariant action§[¥] are in one-to-one correspondence with invariant actions in the
*-product approach, with brackets ag4n17) This will be understood from now on.

Consider again the obvious (classical) functiofidl] 5 d?$*14K on A (or V4) as in
the previous section, and recall frddection 4.2hat it extends trivially to a functional on
U(su2)) x A, by evaluatingU (su2)) with ¢. We will denote this functional by DY .
Define correlation functions of polynomials in th& " variables as

e Sl pa
Py = LPYETTPD ). (5.32)
[ DY eSI¥]

Here P is again the singlet part of the polynomi@l ThenLemma 4.4dmplies
(P(a)) = (Py(a)), (5.33)

always assuming that the actio${g’] are invariant undet/, (su2)). This shows the equiv-
alence with the approach of the previous section. Moreover,

(P(@)aia; Q@) = (P(@aaR{ Q@) (5.34)

follows from (4.7), or from (5.37)below on the perturbative level.
Currents and generating functional/e can again extend by other variables such as
currents

J() =) vka@)jt" € Usu2) x A (5.35)

K.n

and consider the generating functional

~ 1 . S B0
Z[J] = v / DY e S+ () (5.36)

7 Recall that as algebra, there is no difference betwigeu(2)) and[/q (su2)).
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with Z[0] = 1. This is defined as the element4f = .4 obtained after integrating over the
aX -variables; the result depends on the currents only. The biad&ates that the explicit
U (su(2)) factors inU (su2)) x A are evaluated by. Again,Lemma 4.4mplies thatZ[f]
agrees precisely with the previous definiti@n25)

As explained inSection 4 one can consider also the twisted derivative operﬂ%?;’é,
which act onA). UsingProposition 4.2we can derive essentially the same formulas as in
the previous section, omitting the star product. In particaf,5)implies that

23" (/ lf/(x)f(x)) =at" + (/ i/(x)f(x)) 93"

Since invariant elements of are central as was pointed out bel@4), we obtain as usual
(P(@) = j=0(P(3;) Z[J])s=0, (5.37)

A 1 N Sl e 1 Sy 7 1 1A A
Z[J] = ./\_/_ / DY e—(Sfree[‘P]-i-Smt[‘I’])-i-f W(X)J(X)> — j\7 e_slm[d('/)]Zfree[-]])azo’

1
Mree
Even though these formulas can be used to calculate correlators perturbatively, there is

a form which is more convenient for such calculations. To derive it, observg4HaR)
implies

Zfree[ j ] =

/ DY g Sted VI[P 0 I ()y _ gl/2[ TP )y (5.38)

aK.n 1/2 [ J(x)yD~1J 1/2 [ J(x)DLJ —1%K, AK,

b et JI@DT @) = gl/2[ D™ ) (p Koy 5K, (5.39)
one can indeed verify that the algebra of

I;K,n — D;{ljl(,n + é(ljin (540)
is the same as the algebraadf-". Therefore(5.37)can be rewritten as

. 1 A\ s 3 D17 (x
(P(@)) = — j—0( P((j)) e Smli] /2] DIy,

N

1 A A n o . Pl; e—sint[ls] _
:_/J:O(el/zfu) Y p by eSnlbly, o — J=0(P(b) i )a_o_ (5.41)

N Jzo(e*Sim[b])a:o

To evaluate this, one reinserts the definit{&m0) of b as a sum of derivative operators
9 and current generators Eachd must be “contracted” with g to the right of it using
the commutation relation@.14) which gives the inverse propagatbr;®, and the result
is the sum of all possible complete contractions. This is the analog of Wick’s theorem.
The contractions can be indicated as usual by pairing uﬁ thagiables with a line, before
actually reordering them. Then each contribution can be reconstructed uniquely from a
given complete contraction; this could be stated in terms of Feynman rules.

One can also show that the denominator exactly cancels the “vacuum bubbles” in the
numerator, as usual. Indeed, consider any given complete contraction of a term

~ ~1 N
b b= (SimlB]".
n:
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Mark the set of vertices which are connected (via a series of contractions) to some of the
explicit 5 generators on the left with blue, and the others with red. Then two neighboring
red and blue vertices can be interchanged keeping the given contractions, without changing
the result. This is because only the homogeneous part of the commutation rélgticig)
applies, and all vertices are singlets (cemma 4.4. Therefore, the red vertices can be
moved to the right of the blue ones, and their contractions are completely disentangled.
Then the usual combinatorics yields

<P(&)) = J:0<P(l;) eisim[[;])azo, novac (5-42)

in self-explanatory notation. Of course this also holds in the quasi-associative version, but
the derivation is perhaps less transparent.

In general, it is not easy to evaluate these expressions explicitly, because of the coasso-
ciators. However, the lowest-order correctiorig)ovhereq = € are easy to obtain, using
the fact thatp = 1 + o(%#2) for minimal twists(2.13) If we write

Ri2 = 14 hriz + o(h?),
then
~ -1
R12 = R12v/R21R12 =1+ %h(”lz —r21) + O(hz)v

which allows to find the leading(é) corrections to the undeformed correlation functions
explicitly.

Reality structureOne advantage of this formalism is that the reality structure is naturally
induced from the Hilbert spadé,, as explained irBection 4.1UsingProposition 4.2nd
noting that the:X-™ are in the contragredient representatio/asu(2)), it follows that

(&K,n)* — grﬁfnﬁK,m. (543)
We shall assume that all the actions are real
S[¥]* = S[¥],

this will be verified in the examples below. Moreover, the classical integral defines a real
functional onU (su(2)) x A. Hence we conclude that the correlation functions satisfy

(P(&))* = (P(&)*). (5.44)
One can also show that

Yri(0)* = g v, (), (5.45)
whereg] is normalized such that] = (¢)U. Therefore,

@ (x0)* = (), (5.46)

using(5.4). This is useful to establish the reality of actions. Of course, one could also con-
sider complex scalar fields. Finally, the correlation functions satisfy the positivity property

(P(@)*P(a)) =0, (5.47)

8 Associativity helps here.
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provided the actions are real. This is a simple consequence of the fag&t(&tP (a) is a
positive operator acting on the left vacuum representation, together with the positivity of
the functional integral. It is one of the main merits of the present approach.

6. Examples
6.1. The free scalar field

Consider the action

A R
Stred W] = — /S | SPxad . (6.1)

a.N

Here the Laplacian was defined[i using a differential calculus as = xyd *p d, and
satisfie$

1
AwK,n(x) = F[K]q[]( + 1](11//K,n(x) = DKI//K,H()C),

where K1, = (¢X — ¢ %)/(qg — ¢~1). The basig/k , (x) is normalized as if5.17) The
action is real by(5.46), and can be rewritten as

. 1 . 1 A
Streel ¥] = _Z EDKgrfmaKm Ko _ _ZEDK(gK)mnaK,maK,n’
n K.n

using(5.5). As a first exercise, we calculate the 2-point functions. F(bra7) and (5.38)
one finds

@xay) =y O(é,{{éf/zfree[j])a_OZJ_O< OROK (D@ ik Kff)>

-1 AK K’ —l KK ~ K
=Dy 7=0{0, Jn’ )o=0 = ) 8nn >

=0

where(4.13)was used inthe lastline. This resultis as expected, and it could also be obtained
by using explicitly the definition of the twisted operatars.

The calculation of the 4-point functions is more complicated, since it involves the coas-
sociator. To simplify the notation, we consider the (most complicated) case where all gen-
eratorszX have the same spiki, which will be suppressed. The result for the other cases
can then be deduced easily. We also omit the prescriptions 0) etc. Using first the
associative formalisr(b.41)yields

(@namarar) = (D™ 4 0) (D™ i + 3) (D™ Yk + d) (D7 L)y + 8p)
= (9 (D™ + 0n) (D7 i + 9D 7L1) = D720y i &kt + 9n O i 1)
= D%(Znm&kl + OnOm jkJ1)-

9 Itis rescaled from the one {fi] so that its eigenvalues are independenvof
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To evaluate this, consider

(Ondm k1) = (On Gk + JaOpR2) 1) = Gmi@nl + (OnjiaOb Js 70 (RED))
= gmk&nl + §na§bs(¢32131512<13_1)ﬁﬁ(s|~

Collecting the result, we recognize the structure of Wick contractions which are given by
the invariant tensor for neighboring indices, but involve fhenatrix and the coassociator
¢ for “non-planar” diagrams.

To illustrate the quasi-associative approach, we calculate the same 4-point function using
the % product. Then

(an* (am* (ax%ap))) = (@ *k (DL + 8u)* (D~ jic + )% D1 jp)))
= D 2gnm@ + D28y k Bk Gk ki)
using an obvious analog ¢.41) Now
(B (O X Gk j1))) = (B K (B K i) X)) (K"
= & & (@ DMEY (B k(i R B RE ) i) (@~ Hm AT
= Grigmk+ (3 & G % Bk ji ) (P213R126 ~HET
= Gnigmk+ Znnt ur ($213R 126~ HEmT

in agreement with our previous calculation; here the iderfitt) was used. As pointed
out before, the corrections to ordeizyp can now be obtained easily.

6.2. Remarks oV — oo and¢® theory

The above correlators for the free theory are independent a long as the spin of the
modes is smaller thaN. Therefore, one can define the limNt — oo in a straightforward
way, keepingR constant. In this limit, the algebra of functions on theleformed fuzzy
sphere becomes

sgxixj = R(q — q_l)xk, gijxixj = R2, (6.2)
which definesSZ,N:OO. It has a unique faithful (infinite-dimensional) Hilbert space repre-
sentatior{9].

In aninteracting theory, the existence of the lidit—> oo is of course a highly non-trivial
question. Consider e.g., tli¢ model, with action

1; 7 1 26042 R
S[v] = , EW(X)AW(X) + >m Y (x) + AP (x)" = Stree + Sint
S
q,N
which is real, using5.46) We want to study the first-order correctionsiimo the 2-point
function (&f&f} using(5.42)

~K~K
(a[ aj)

=/=0 <B{<B§< (H f L v @y ot @yt (obib] bﬁb%>> :
Sq,N 0, novac
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We only consider the “leading” planar tadpole diagram. It is given by any contraction of
thebX andbX with b’s in the interaction term, which does not involve “crossings”. All of
these contrlﬁ)utlons are the same, hence we assumg thabntracted withk andi with

1. Thenbl, is contracted witth, which givesD; *gL s"™M. Now y = (x)yrbm (x) gk €

S;  is invariant undet/, (su(2)) and therefore, proportional to the constant function. The
numerical factor can be obtained frq17)

/wL”"@)wL’"(x)gmn gM"ghn=[2L + 1]; = zdim(VE).
HereV’ denotes the spih representation o/, (su2)). Using [ 1 = 4x R?, the contribu-
tion to(afaf) is

5 1

gi{‘g,kx/W(x)WmZD 2L+ 1,

i A i [2L + 1],
~ 0 4 S L IL + 1, + m2R?

up to combinatorial factors of order 1. Unfortunately, this diverges lineatyfior N — oo,
whenevely # 1. This is worse that fog = 1, where the divergence is only logarithmic.
This is in contrast to a result §f2], which is, however, in the context of a different concept

of (braided) QFT which does not satisfy our requirementSeation 5 and hence is not a
“smooth deformation” of ordinary QFT. The contributions from the “non-planar” tadpole
diagrams are expected to be smaller because the coassgcisorell ask are unitary.

At least for scalar field theories, this behavior could be improved by choosing another
Laplacian such a& — v=1) /(g — ¢~1) which has eigenvalues [2L + D],, wherev is

the Drinfel'd—Casimir(3.16) Then all diagrams are convergents— oo. Finally, the
casey being a root of unity is much more subtle, and we postpone it for future work.

6.3. Gauge fields

The quantization of gauge fielzg v isless clear at present, and we will briefly indicate
two possibilities. Gauge fields were introducedlhas one-forms3 € .Ql HereQ

is the subspace of one-forms in ttig(su(2))-module algebra of dlﬁerentlal forms cﬂ’f N
It turns out that there is a basis of three independent one-feétméich commute with all
functions onSq% . Itis then natural to expand the gauge fields in that basis

B =Y B (6.3)

The fact that there are three independent one-forms means that one component is essentially
radial and should be considered as a scalar field on the sphere; however, it is impossible to
find a (covariant) calculus with “tangential” forms only. Therefore, gaugetheo&gqpas
presented here is somewhat different from the conventional picture, but may nevertheless
be very interesting physicalf29].
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Actions for gauge theories are expressionsBinvhich involve no explicit derivative
terms. Examples are

53=/B3, S2=/B*H B, S4=/BZ*H B2, (6.4)
wherexy is the Hodge star operator. The curvature can be definéd-as32 — sy B. The
meaning of the field3 becomes more obvious if it is written in the form

B=06+A, (6.5)

where® ¢ Ql’N is the “Dirac-operator”. WhileB and ® become singular in the limit
N — o0, A remains well-defined. In these variables, a more standard form of the actions
is recovered, including Yang—Mills

Sym :=/F*HF=/(dA+A2) xp (dA + A?) (6.6)
and Chern-Simons
1 1 1 2
== —Z | Bxy B=— Z | AdA + 248 7
Scs 3/ 2/ *y const+ 2/ dA + 3 (6.7)

terms. For further details we refer jb].

Even though these actions (in particular the prescription “no explicit derivatives”) are
very convincing and have the correct limitat= 1, the precise meaning of gauge invariance
is not clear. In the casg = 1, gauge transformations have the fop — U~1B,U for
any unitary matrix/, and actions of the above type are invariant. §ef 1, the integral is
a quantum trace which contains an explicit “weight facgor” , breaking this symmetry.
There is, however, another symmetry of the above actions whig(su(2)) acts on the
gauge fieldsB, as[1]

B, — u1B,Sw (6.8)

or equivalentlyB — u1BSu. This can be interpreted as a gauge transformation, leaving the
actions invariant for any e U, (su2)) with g, (1) = 1, and it is distinct from the rotations

of B. There is no obvious extension to a deformi&@w N)) invariance, however. There is
yet anothelﬁq (su2)) symmetry, rotating the frame¥' only, i.e. mixing the components
B,. The rotation of the fieldB is rather complicated if expressed in terms of g
however.

The significance of all these different symmetries is not clear, and we are not able to
preserve them simultaneously at the quantum level. We will therefore indicate two possible
guantization schemes, leaving different symmetries manifest.

Quantization respecting rotation-invarianceirst, we want to preserve thé, (su2))
symmetry corresponding to rotations of the one—fomjs,\,, which underlies their algebraic
propertie1]. We shall moreover impose the constraint

d*HBZO,

which can be interpreted as gauge fixing. It is invariant under rotations, and removes pre-
cisely the null-modes in the Yang—Mills and Chern—Simons terms. We expand thé field



234 H. Grosse et al./Journal of Geometry and Physics 43 (2002) 205-240
into irreducible representations under this actio®/gf{su2)):

B= ) &g, bk (6.9)

K,n;a

HereE,‘;n x) € .(21’N are one-forms which are spkirepresentation dv, (sw(2)) (“vector
spherical harmonics”). The multiplicity is now generically 2 because of the constraint,
labeled byu.

To quantize this, we can use the same methods @edtion 5One can either definesa
product of the coefficientsX " as discussed there, or introduce the opera’iﬁr% acting
on a left vacuum representation. Choosing the star product approach to be specific, one can
then define correlation functions as

(P,(b)) = /\i/ f DB e SBlp, () (6.10)

whereDB is the integral over abX-", write down generating functions etc. This approach
has the merit that the remarkable solutiBn= ® of the equationF = 0 in [1] survives
the quantization, because the corresponding mode is a singlet (ﬁvﬂmﬁbg*o is unde-
formed). Incidentally, observe that the bracketii@8B) xx (BB) and [ B(B xz (BB)) in

the star-product approach are equivalent, becaugz 1)

Quantization respecting “gauge invarianceFirst, notice that there is no need for
gauge fixing before quantization even fgr= 1, since the group of gauge transfor-
mations is compact. To preserve the symmég@y3) as well as the rotation of the?,
we expandB into irreducible representations under these two symmelij€su(2)) and

U, (su2)):
B= ) vka()0pL". (6.11)

K.,n;a

Now ﬂ,f’” is a spinkK representation ctflq (su2)) and a spin 1 representationldf (su2)).

These are independent and commuting symmetries, hence the quantization will involve their
respective Drinfel'd twistsF and F. In the associative approach 8ection 5we would

then introduce

BEn = pEn g (Fygn SFTYF F Y € (D(sU2) ® U(su2)) x A.

To avoid confusion, we have used an explicit matrix notation here. The rest is formally as
before, and will be omitted. One drawback of this approach is that the above-mentioned
solution B = ® is somewhat obscured now: the corresponding mode is padfﬁ’(bf

but not easily identified. Moreover, “overall” rotation invariance is not manifest in this
quantization.

6.4. QFT in2, + 1dimensions, Fock space

So far, we considered two-dimensiopatieformed Euclidean field theory. In this section,
we will add an extra (commutative) time and define & 2-dimensional scalar QFT on
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S2 ~ With manifestf]q (sw2)) x R symmetry, wheréR corresponds to time translations.
T?{is will be done using an operator approach, wjtdeformed creation and anihilation
operators acting on a Fock space. The purpose is mainly to elucidate the meaning of the
Drinfel’d twists as “dressing transformations”.

We consider real scalar field operators of the form

Ui, 0 =y yRrwaka 0 + v wrag o), (6.12)
K.n
where
a1 = Ut 0a L OU @) (6.13)

for some unitary time-evolution operatot(r) = e "M/ we will again puth = 1. The
Hamilton-operatorH acts on some Hilbert spadé. We will assume that{ is invariant
under rotations,

[H,ul=0

whereu € U (sw2)) is an operator acting oH; recall that as (operator) aIgeb[é,(su(Z))
is the same a¥ (su(2)). Rather than attempting some kind of quantization procedure, we
shall assume that

a0 = Filteal) 0Fyt = al) (m(FLHF (6.14)
) _

asin(4.1), wherea;, = a; ' (0) are ordinary creation and anihilation operators generating
a oscillator algebra,

lak n, g, ] = Sk (ge)nns [ak ns ax'w] = lag . a1 =0
and act on the usual Fock sp&te

H =g, ap 0. (6.15)
‘H is in fact a representation @f (su2)) x A, and the explicitU (su(2))-terms in(6.14)
are now understood as operators actingorHence the&f{i (t) are some kind of dressed

creation and anihilation operators, whose equal-time commutation relations follow from
(4.7) and (4.14)

A oAt At oA 14 At At At At ol
ax nly v = S8k k'8 + Ay Ak 1NRpy, ag A =g pag Ry

PN ~ ~ I
ag nag = ag rag 1Ry

~(4) ~(+)

wherea; = ay ,(0). The Fock spac¢6.15)can equivalently be written as

H=eatkn...atK"0). (6.16)

10 Note that this is the same as the “left vacuum representation” of the subalgebra generateaii;p,y, hehe
notation ofSection 4
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Here the main point of our construction of a quantum group covariant field theory is most
obvious, namely that a symmetrization postulate has been implemented which restricts the
number of states in the Hilbert space as in the undeformed case. This is the meaning of the
property (4) in the introductory discussion 8éction 5 One could even exhibit a (trivial)
action of the symmetric grouf, on then-particle space, using the unitary transformation
induced by the Drinfel’d twisf, as in[14]. Moreover, using5.45)and an analog b.43)
it follows that

U(x, )" = ¥(x,1).

One can also derive the usual formulas for time-dependent perturbation theory, if we assume
that the Hamilton operator has the form

H = Hpree+ 'V,
where
N
Hiee= Yy  Dx(Z*)"™a} axm = Z D (g5)"™af ak m. (6.17)
K=0

andV may have the form

V= / U OP(x) - W (x).
32

q.N

Using(4.15) one can see that
[Hree, a aK 1] = DKGK 1

and similarly fora ;. Therefore, the eigenvectorsiec have the forna %7 . . AL |0)
with eigenvalue§Dg + - -- + Dg/) € R, and if V = 0, then the time evolution is given as
usual by
aK n(t) —e |Dm/h€l;n’ &K,n(f) — elDKt/h&K,n

One can then go to the interaction picturé&’it£ 0 and derive the usual formula involving
time-ordered products. However, one must now keep the time-ordering explicit, and there
seems to be no nice formula for contractions of time-ordered products. We shall not pursue
this any further here.

The main point here is that the above definitions are entirely within the framework of
ordinary quantum mechanics, with a smooth ligit— 1 where the standard QFT on
the fuzzy sphere is recovered. Again, one could also consider theNimit oo while
keepingg constant. The existence of this limit is far from trivial. Moreover, there is nothing
special about the spaﬁ as opposed to other, perhaps higher-dimensigrddformed
spaces, except the technical simplifications because of the finite number of modes. This
shows that there is no obstacle in principle for studying deformations of QFT on such
spaces.
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Appendix A. Some proofs

Proof of Proposition 2.1. Assume thafF is minimal, so tha{2.13)holds. We must show
that it can be chosen such thatis unitary as well. Define

A= Fo3(1Q A)F, B = F12(AQDF,

so thatyp = B~1A. From(2.13)it follows that (x ® * ® %)¢ = ¢ 1, henceAA* = BB,
and more generally

(AR = f(BBY)

for functions f which are defined by a power series. This also implies that
Af(A*A)A* = Bf(B*B)B*

for any suchf, hence
¢f(A*A) = f(B*B)¢* ' = f(B*B)¢.

In particular we can choosg(x) = +/x which makes sense becausdgaf), and obtain
\/B*Bfldn/A*A =¢. (A1)

On the other hand, the elemeht:= ((x ® x)F) F commutes withA («) becausd* ®
¥)Aq () = Ay (u*), and so does/T, which is well-defined in (su2))[[ 1] since F =
1+ o(h). Moreover,T is symmetric, noting that

(* ® %) (FauF Y = FFoi (A.2)

which follows from the well known relatioiix ® *)R = Ro1 for ¢ € R. Therefore,T

is an admissible gauge transformation, afd:= ]-'\/Tfl is easily seen to be unitary

(this argument is due tf26]). In particular, sinceF*F commutes withA (u), it follows

that A*A = (F53723)(1 ® A)(F*F) and B*B = (Fi,F12)(A ® 1)(F*F). Looking at

the definition(2.11) this means that the left-hand side(#f.1) is the gauge transforma-

tion of ¢ under a gauge transformatich — F' = ]-'«/7_1, which makesF unitary.
Therefore, the coassociator is unchanged under this gauge transformation, hence it remains
minimal. O
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Proof of Lemma 3.2. We simply calculate
a;r *(azkaz) = (aI *az)*a3<;31‘213 = (g12+ az"rair 7~€12)*a3<131_213
= 812a3<131_213 + az*(aI *a3)<132137~312¢~51_213
= g12a3<2~51_213 +azx*x(gi3+ a3*aI 7é13)<l~52137~312¢~>1_213
= ngaBQBIzlg + a2813¢32137~312<¢~>{213 + (02*03)*aI 553117%1343213731255{213
= glza3¢~5izl3 + a28316231R 1,23 (az*a3)*aI R1, 23,

where(3.14) and g31R13 = g13 was used in the last step. Now the first iden(isy23)
follows immediately along these lines, omitting the inhomogeneous terms. To see the last
one(3.25) observe that

c 1 S —
g12¢123 = (gc)12-7:1,(23)-7:23
becausgi2F(12),3 = g12, and similarly
8312311, (23 = (8c)13F7 (123)7:2_31-
This implies that
(8120307 55+028310231R1,23) Paz = ((8)1203+(80)1302) (1 — 85 Fy (5 Fg = O,

where we used the fact that the undeformed coproduct is symmetric. The g8caAp
follows as above using

8310231R 1, 2382 = 82,
or simply from(3.21) O
Proof of Proposition 4.1. Relation(4.11)follows easily from
7l ()(g0)"S = 7] (SU(ge)". (A-3)
To prove(4.10) consider
glaa; =gV Fi v ai(Fy i Fy Y v aj Fya iyt
= awa g} (F O (Fy 1 F Y FyaFy
= aam;) (v') (8e) " mf (Fy O (Fy 1 F D Fy syt
Now we user! (F; 1) (o)™ = (g0)¥n/ (SF; 1), therefore
gaiaj = ara(ge) n(Fpy Fty SFL DT, 3 Fy = aar(ge)™

because 0§2.18) O
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Proof of Proposition 4.2. (4.13)follows easily from(4.10)

3 (g%a;ar) = 8 ((ge)%ajar) = 97 (FTHF, (g ajar)
= 3,7 (FrH (g *ajap) Fy 't
= 2a, 7" (FLHF; 1+ (g X ajar) duml (FHFy = 2a; + (¢%a;a1)d;

as claimed. Next, consider

Biaj = 0! (Fy D (Fy i F, Y Fy b Fy
— (gc)nlﬂ,-"(}_l_l)”; (fi%f;l)fzf%]:b +a1n (F, 1}' H)a, 7T"(7'_1 )F5. 21]:17

The second term becomé;séﬁ)‘i}}( as in(4.7), and the first is

(@It (Fy Ol (Fy 1 Fa D Fy 37y
=1} (SFL @i (Fy 1 Fy D5 3yt = (oim§(SFy oy 1 F D F 3 F,
= (g7} (V)=(go)im} (SFy b (Fy ) = (goum! (Fy Hh(Fy b = gi (A.4)
using(2.17) a

Proof of Proposition 4.3. Sincer is a unitary representation, we have

= Foa’m}(F1) = Faar(8e)m(F1) = Faar(ge)" 7k (SF1)
= azﬂ;i(fz,l)(gc)inﬂ,f(5}'1)]:2,2 = azﬂ;i(fz,lsfl)fz,zgitﬂf()//71)
= (Fo1SF1y "N Fa08" = ! (FTHFy 1" = dng™

where(2.16)was essential. a
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