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Abstract

We study the second quantization of field theory on theq-deformed fuzzy sphere forq ∈ R. This
is performed using a path integral over the modes, which generate a quasi-associative algebra. The
resulting models have a manifestUq(su(2)) symmetry with a smooth limitq → 1, and satisfy pos-
itivity and twisted bosonic symmetry properties. A systematic way to calculaten-point correlators
in perturbation theory is given. As examples, the 4-point correlator for a free scalar field theory and
the planar contribution to the tadpole diagram inφ4 theory are computed. The case of gauge fields
is also discussed, as well as an operator formulation of scalar field theory in 2q + 1 dimensions.
An alternative, essentially equivalent approach using associative techniques only is also presented.
The proposed framework is not restricted to two dimensions.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The idea of studying field theory onq-deformed spaces has been pursued since their
appearance more than 10 years ago. While much work has been done on the level of first
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quantization (see e.g.[1–8] and references therein), the second quantization has proved
to be difficult. The main problem is perhaps the apparent incompatibility between the
symmetrization postulate of quantum field theory (QFT), and the fact that quantum groups
are naturally associated with the braid group rather than the symmetric group. One could of
course consider theories with generalized statistics; however, ifq-deformation is considered
as a true “deformation” of ordinary space, then it should be possible to define models with a
smooth limitq → 1. In particular, the number of degrees of freedom should be independent
of q. The goal of the present paper is to define aq-deformed QFT which is essentially
bosonic, and has a smooth limitq → 1.

In our previous work[1], we studied in detail field theory on theq-deformed fuzzy spheres
S2
q,N at the first-quantized level. The spheresS2

q,N are precisely the “discrete series” of Po-
dles spheres[9] if q ∈ R. This space is particularly well suited to attack the problem of
second quantization, because there is only a finite number of modes. Therefore, all consid-
erations can be done on a purely algebraic level, and are essentially rigorous. The methods
we shall develop here are, however, not restricted to that case, but should generalize imme-
diately to otherq-deformed spaces, at least on a formal level. There will be complications,
of course, if the number of modes is infinite.

To understand the problem, consider scalar fields, which are elementsψ ∈ S2
q,N . A

typical action can have the form

S[ψ ] = −
∫
S2
q,N

1

2
ψ�ψ + λψ4, (1.1)

where� is the Laplacian[1]. Such actions are invariant under the quantum groupUq(su(2))
of rotations, and they are real,S[ψ ]∗ = S[ψ ]. They define a first-quantized Euclidean scalar
field theory on theq-deformed fuzzy sphere.

We want to study the second quantization of these models. On the undeformed fuzzy
sphere, this is fairly straightforward[10,11]. The fields can be expanded in terms of irre-
ducible representations ofSO(3)

ψ(x) =
∑
K,n

ψK,n(x)a
K,n (1.2)

with coefficientsaK,n ∈ C. The above actions then become polynomials in the variables
aK,n which are invariant underSO(3), and the “path integral” is naturally defined as the
product of the ordinary integrals over the coefficientsaK,n. This defines a QFT which has
aSO(3) rotation symmetry because the path integral is invariant.

In the q-deformed case, this is not so easy. The reason is that the coefficientsaK,n in
(1.2)must be considered as representations ofUq(su(2)) in order to have such a symmetry
at the quantum level. This implies that they cannot be ordinary complex numbers, because a
commutative algebra is not consistent with the action ofUq(su(2)), whose coproduct is not
cocommutative. Therefore, an ordinary integral over commutative modesaK,n would violate
Uq(su(2)) invariance at the quantum level. On the other hand, no associative algebra with
generatorsaK,n is known (except for some simple representations) which is both covariant
underUq(su(2)) and has the same Poincaré series as classically, i.e. the dimension of the
space of polynomials at a given degree is the same as in the undeformed case. The latter
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is an essential physical requirement at least for low energies, in order to have the correct
number of degrees of freedom, and is usually encoded in a symmetrization postulate. It
means that the “amount of information” contained in then-point functions should be the
same as forq = 1. These issues will be discussed on a more formal level inSection 5. While
some proposals have been given in the literature[12,13]how to define QFT on spaces with
quantum group symmetry, none of them seems to satisfies all these requirements.

One possible way out has been suggested in[14], where it was shown that a symmetriza-
tion can be achieved using a Drinfel’d twist, at least in any givenn-particle sector. Roughly
speaking, the Drinfel’d twist relates the tensor product of representations of quantum groups
to the tensor product of undeformed ones, and hence essentially allows to use the usual com-
pletely symmetric Hilbert space. The problem remained, however, how to treat sectors with
different particle number simultaneously, which is essential for a QFT, and how to handle
the Drinfel’d twists which are very difficult to calculate.

We present here a formalism which solves these problems, by defining a star product of
the modesaK,n which is covariant under the quantum group, and in the limitq → 1 re-
duces to the commutative algebra of functions in theaK,n. This algebra is quasi-associative,
but satisfies all the requirements discussed above. In particular, the number of independent
polynomials in theaK,n is the same as usual. One can then define an invariant path integral,
which yields a consistent and physically reasonable definition of a second-quantized field
theory with a quantum group symmetry. In particular, the “correlation functions” will sat-
isfy invariance, hermiticity, positivity and symmetry properties. An essentially equivalent
formulation in terms of a slightly extended associative algebra will be presented as well,
based on constructions by Fiore[15]. It turns out to be related to the general considerations
in [16]. The appearance of quasi-associative algebras is also consistent with results in the
context ofD-branes on WZW models[17,18].

Our considerations are not restricted to two dimensions, and should be applicable to other
spaces with quantum group symmetry as well. The necessary mathematical tools will be
developed inSections 2–4. After discussing the definition and basic properties of QFT on
S2
q,N in Section 5, we derive formulas to calculaten-point functions in perturbation theory,

and find an analog of Wick’s theorem. All diagrams onS2
q,N are of course finite, and vacuum

diagrams turn out to cancel a usual. The resulting models can also be interpreted as field
theories on the undeformed fuzzy sphere, with slightly “non-local” interactions.

As applications of the general method, we consider first the case of a free scalar field
theory, and calculate the 4-point functions. The tadpole diagram for aφ4 model is studied
as well, and turns out to be linearly divergent asN → ∞. We then discuss two possible
quantizations of gauge models, and finally consider scalar field theory onS2

q,N with an extra
time.

We should stress that our approach is quite conservative, as it aims to find a “deformation”
of standard QFT in a rather strict sense, with ordinary statistics. Of course on can imagine
other, less conventional approaches, such as the one in[12]. Moreover, we only consider
the caseq ∈ R in this paper. It should be possible to modify our methods so that the case
of q being a root of unity can also be covered. Then QFT on more realistic spaces such
as four-dimensional quantum Anti-de Sitter space[19] could be considered as well. There,
the number of modes as well as the dimensions of the relevant representations are finite at
roots of unity, as in the present paper.
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2. Some mathematical background: Drinfel’d twists

We first review some mathematical results which are the basis of the later consider-
ations. In order to avoid confusions, the language will be quite formal initially. To a
given finite-dimensional simple Lie algebrag (for our purpose justsu(2)), one can asso-
ciate two Hopf algebras[20–22]: the usual(U(g)[[h]] ,m, ε,�, S), and theq-deformed
(Uq(g),mq, εq,�q, Sq). HereU(g) is the universal enveloping algebra,Uq(g) is the
q-deformed universal enveloping algebra, andU(g)[[h]] are the formal power series in
h with coefficients inU(g). The symbol

q = eh

is considered formal for now. Then a well-known theorem by Drinfel’d (Proposition 3.16
in [23]) states that there exists an algebra isomorphism

ϕ : Uq(g) → U(g)[[h]] (2.1)

and a ‘twist’, i.e. an element

F = F1 ⊗ F2 ∈ U(g)[[h]] ⊗ U(g)[[h]]

(in a Sweedler notation, where a sum is implicitly understood) satisfying

(ε ⊗ id)F = 1 = (id ⊗ ε)F, (2.2)

F = 1 ⊗ 1 + o(h), (2.3)

which relates these two Hopf algebraUq(g)andU(g)[[h]] as follows: ifF−1 = F−1
1 ⊗F−1

2
is the inverse1 of F , then

ϕ(mq) = m ◦ (ϕ ⊗ ϕ), (2.4)

εq = ε ◦ ϕ, (2.5)

ϕ(Sq(u)) = γ−1S(ϕ(u))γ, (2.6)

ϕ(S−1
q (u)) = γ ′S(ϕ(u))γ ′−1, (2.7)

(ϕ ⊗ ϕ)�q(u) = F�(ϕ(u))F−1, (2.8)

(ϕ ⊗ ϕ)R = F21q
t/2F−1, (2.9)

for anyu ∈ Uq(g). Here,t := �(C) − 1 ⊗ C − C ⊗ 1 is the canonical invariant element
in U(g)⊗ U(g), C is the quadratic Casimir, and

γ = S(F−1
1 )F−1

2 , γ ′ = F2SF1, γ−1 = F1SF2 = Sγ ′,

γ ′−1 = S(F−1
2 )F−1

1 = Sγ. (2.10)

1 It exists as a formal power series because of(2.3).
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Moreover,γ−1γ ′ is central inU(g)[[h]]. The undeformed maps2 m, ε,�, S have been
linearly extended fromU(g) to U(g)[[h]]; notice thatS2 = 1. F21 is obtained from
F by flipping the tensor product. This kind of notation will be used throughout from
now on. Coassociativity of�q follows from the fact that the (non-trivial) coasso-
ciator

φ := [(�⊗ id)F−1](F−1 ⊗ 1)(1 ⊗ F)[(id ⊗�)F ] (2.11)

isU(g)-invariant, i.e.

[φ,�(2)(u)] = 0

for u ∈ U(g). Here�(2) denotes the usual two-fold coproduct.
In the present paper, we only consider finite-dimensional representations, i.e. operator

algebras rather than the abstract ones. Then the formal parameterq = eh can be replaced by
a real number close to 1, and all statements in this section still hold since the power series
will converge. One could then identify the algebrasU(su(2)) with Uq(su(2)) (but not as
coalgebras) via the isomorphismϕ. We will usually keepϕ explicit, however, in order to
avoid confusions.

It turns out that the twistF is not determined uniquely, but there is some residual “gauge
freedom”[23]

F → FT (2.12)

with an arbitrary symmetricT ∈ U(g)[[h]]⊗2 which commutes with�(U(g)) and satisfies
(2.2) and (2.3). The symmetry ofT guarantees thatR is unchanged, so thatF remains a
twist from (U(g)[[h]] ,m, ε,�, S) to (Uq(q),mq, εq,�q, Sq). We will take advantage of
this below.

While for the twistF , little is known apart from its existence, one can show[15] using
results of Kohno[24] and Drinfel’d[23] that the twists can be chosen such that the following
formula holds:

φ = lim
x0,y0→0+

{
x

−(h/2πi)t12
0

�P exp

[
− h

2πi

∫ 1−y0

x0

dx

(
t12

x
+ t23

x − 1

)]
y
(h/2πi)t23
0

}

= 1 + o(h2). (2.13)

Here �P denotes the path-ordered exponential. Such twists were called “minimal” by Fiore
[15], who showed that they satisfy the following remarkable relations:

1 = F�F1(1 ⊗ (SF2)γ ), (2.14)

1 = (1 ⊗ SF2γ
′−1)F(�F1), (2.15)

1 = F�F2((SF1)γ
′−1 ⊗ 1), (2.16)

1 = (γ−1SF−1
1 ⊗ 1)�F−1

2 F
−1, (2.17)

2 We will suppress the multiplication maps from now on.
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1 = �F−1
2 F

−1(γ ′SF−1
1 ⊗ 1), (2.18)

1 = (1 ⊗ γ ′SF−1
2 )�F−1

1 F
−1. (2.19)

All coproducts here are undeformed. Furthermore, we add the following observation, let
(Vi, �) be representations ofU(g) andI (3) ∈ V1 ⊗ V2 ⊗ V3 be an invariant tensor, so that
u � I (3) ≡ �(2)(u) � I (3) = ε(u)I (3) for u ∈ U(g). Then the (component-wise) action of
φ on I (3) is trivial:

φ � I (3) = I (3). (2.20)

This follows from(2.13): observe thatt12 commutes witht23 in the exponent, because e.g.
(�(C)⊗ 1) can be replaced by1 ⊗ 1 ⊗C if acting on invariant tensors. Therefore, the path
ordering becomes trivial and(2.20)follows.

Star structure. Consider onU(su(2))[[h]] the (antilinear) star structure

H ∗ = H, X±∗ = X∓, (2.21)

with h∗ = h, sinceq is real. It follows, e.g. from its explicit form[25] that the algebra map
ϕ is compatible with this star

ϕ(u)∗ = ϕ(u∗).

It was shown in[26] that using a suitable gauge transformation(2.12), it is possible to
chooseF such that it is unitary

(∗ ⊗ ∗)F = F−1. (2.22)

Moreover, it was stated in[15] without proof that the following stronger statement
holds:

Proposition 2.1. Using a suitable gauge transformation(2.12), it is possible to choose a
twistF which forq ∈ R is both unitary and minimal, so that(2.22)and(2.14)–(2.19)hold.
Since this is essential for us, we provide a proof inAppendix A.

3. Twisted Uq(g)-covariant �-product algebras

Let (A, ·, �) be an associativeU(g)-module algebra, which means that there exists an
action

U(g)×A→ A, (u, a) �→ u � a
which satisfiesu � (ab) = (u(1) � a)(u(2) � b) for a, b ∈ A. Here,�(u) = u(1) ⊗ u(2)
denotes the undeformed coproduct. Using the mapϕ (2.11), we can then define an action
of Uq(g) onA by:

u �q a := ϕ(u) � a, (3.1)
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or u �q ai = ajπ
j
i (ϕ(u)) in matrix notation. This does not define aUq(g)-module algebra,

because the multiplication is not compatible with the coproduct ofUq(g). However, one
can define a new multiplication onA as follows:

a�b := (F−1
1 � a) · (F−1

2 � b) = ·(F−1 � (a ⊗ b)) (3.2)

for anya, b ∈ A. It is well known[27] that(A,�, �q) is now aUq(g)-module algebra:

u �q (a�b)= ϕ(u) � ((F−1
1 � a) · (F−1

2 � b)) = ·((�(ϕ(u))F−1) � a ⊗ b)

= ·((F−1(ϕ ⊗ ϕ)�q(u)) � a ⊗ b) = �(�q(u) �q a ⊗ b)

for u ∈ Uq(g). In general, this product� is not associative, but it isquasi-associative,
which means that

(a�b)�c = (φ̃1 � a)�((φ̃2 � b)�(φ̃3 � c)), (3.3)

where

φ̃ := (1 ⊗ F)[(id ⊗�)F ][(�⊗ id)F−1](F−1 ⊗ 1) = UFφU−1
F (3.4)

with

UF = (1 ⊗ F)[(id ⊗�)F ] ∈ U(g)⊗3,

which satisfies

[φ̃,�(2)
q (u)] = 0

for u ∈ Uq(g). All this follows immediately from the definitions. Moreover, the following
simple observation will be very useful:

Lemma 3.1. In the above situation,

(a�b)�c = a�(b�c) (3.5)

if one of the factorsa, b, c ∈ A is invariant underU(g). If (A, ·) is commutative, then any
elementS ∈ A which is invariant under the action ofU(g), u � S = ε(u)S, is central in
(A,�, �q).

Note that invariance of an elementa ∈ A underU(g) is the same as invariance under
Uq(g).

Proof. This follows immediately from(2.2) together with the definition of̃φ. To see the
last statement, assume thatS is invariant. Then

S�a = (F−1
1 � S) · (F−1

2 � a)= · (((ε ⊗ 1)F−1) � (S ⊗ a)) = S · a = a · S = a�S

(3.6)

for anya ∈ A. �
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For actual computations, it is convenient to use a tensor notation as follows: assume that
the elements{ai}ofA form a representation ofU(g). Denotingφ̃rst

ijk = πri (φ̃1)π
s
j (φ̃2)π

t
k(φ̃3),

Eq. (3.3)can be written as

(ai�aj )�ak = ar�(as�at )φ̃
rst
ijk , or (a1�a2)�a3 = a1�(a2�a3)φ̃123. (3.7)

The last notation will always imply a matrix multiplication as above.
Conversely, given aUq(g)-module algebra(A,�, �q), one can twist it into aU(g)-module

algebra(A, ·, �) by

a · b := (ϕ−1(F (1)) �q a)�(ϕ−1(F (2)) �q b),
where of courseu � a = ϕ−1(u) �q a. Now if (A,�, �q) was associative, then(A, ·, �) is
quasi-associative

a · (b · c) = φ �(3)q ((a · b) · c) := ((φ1 �q a) · (φ2 �q b)) · (φ3 �q c).
Such a twist was used in[1] to obtain the associative algebra of functions on theq-deformed
fuzzy sphere from the quasi-associative algebra of functions onD2-branes in theSU(2)
WZW model found in[17].

Commutation relations andR-matrices. These twisted algebras have a more intrinsic
characterization, which is much more practical. Consider a commutativeU(g)-module
algebra(A, ·, �), and the associated twistedUq(g)-module algebra(A,�, �q) as defined
above. Observe that the definition(3.2) is equivalent to

a�b= (F−1
1 � a) · (F−1

2 � b) = (F−1
2 � b) · (F−1

1 � a) = ·((F−1FF−1
21 ) � (b ⊗ a))

= (R̃2 �q b)�(R̃1 �q a), (3.8)

where we define

R̃ := (ϕ−1 ⊗ ϕ−1)F21F
−1 = R̃−1

21 . (3.9)

In a given representation, this can be written as

ai�aj = ak�alR̃
lk
ij , or a1�a2 = a2�a1R̃12, (3.10)

where

R̃
ji
kl = (π

j
k ⊗ πil )(R̃). (3.11)

Now there is no more reference to the “original”U(g)-covariant algebra structure.̃R does
not satisfy the quantum Yang–Baxter equation in general, which reflects the non-associativity
of the� product. However, it does satisfy

R̃R̃21 = 1, (3.12)

R̃(12),3 := (�q ⊗ 1)R̃ = φ̃312R̃13φ̃
−1
132R̃23φ̃123, (3.13)

R̃1,(23) := (1 ⊗�q)R̃ = φ̃−1
231R̃13φ̃213R̃12φ̃

−1
123, (3.14)

as can be verified easily. This means that we are working with the quasi-triangular quasi-Hopf
algebra[23] (Uq(g),�q, φ̃, R̃), which is obtained from the ordinary Hopf algebra(U(g),



H. Grosse et al. / Journal of Geometry and Physics 43 (2002) 205–240 213

�, 1, 1) by the Drinfel’d twistF . In practice, it is much easier to work with̃R than with
F . Forq ∈ R, one can in fact write

R̃ = R
√
R21R12

−1
, (3.15)

whereR is the usual universalR-matrix (2.9) of Uq(g), which does satisfy the quantum
Yang–Baxter equation. The product(R21R12) could moreover be expressed in terms of the
Drinfel’d–Casimir

v = (SqR2)R1q
−H , (3.16)

which is central inUq(g) and satisfies�(v) = (R21R12)
−1v ⊗ v. The square root is

well-defined on all the representations which we consider, sinceq is real.
Twisted Heisenberg algebras. Consider theU(g)-module algebra(AH , ·, �) with gener-

atorsai anda†
j in some given irreducible representation and commutation relations

[a†
i , a

†
j ] = 0 = [ai, aj ], [a†

i , aj ] = (gc)ij , (3.17)

where(gc)ij is the (unique) invariant tensor in the given representation ofU(g). We can
twist (AH , ·, �) as above, and obtain theUq(g)-module algebra(AH ,�, �q). The new
commutation relations among the generators can be evaluated easily:

a1�a2 = a2�a1R̃12, a
†
1 �a

†
2 = a

†
2 �a

†
1 R̃12,

a
†
1 �a2 = g12 + a2�a

†
1 R̃12. (3.18)

Here

gnm = (gc)rsπ
r
n(F

−1
1 )πsm(F

−1
2 ) (3.19)

is the unique rank 2 tensor which is invariant under the action�q ofUq(g). A similar relation
holds for the invariant tensor with upper indices:

gnm = πnr (F1)π
m
s (F2)g

rs
c , (3.20)

which satisfiesgnmgml = δnl . In particular, it follows that

a�a := a1�a2g
12 = a1 · a2(gc)

12, (3.21)

therefore, the invariant bilinears remain undeformed. This is independent of the algebra of
the generatorsai .

It is sometimes convenient to use theq-deformed antisymmetrizer[14]

P−
12 = F12(1 − δ21

12)F
−1
12 = (1 − P R̃)12

acting on the tensor product of two identical representations, whereP is the flip operator.
Then the commutation relations(3.10)can be written as:

a1�a2P
−
12 = 0. (3.22)

For products of three generators, the following relations holds:
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Lemma 3.2.

a1�(a2�a3) = (a2�a3)�a1R̃1,(23), (3.23)

a
†
1 �(a2�a3g

23) = 2a1 + (a2�a3g
23)�a

†
1 , (3.24)

a
†
1 �(a2�a3P

−
23) = (a2�a3P

−
23)�a

†
1 R̃1,(23). (3.25)

The proof is inAppendix A.

3.1. Integration

From now on we specialize tog = su(2), even though much of the following holds more
generally. Let{ai} be a basis of the spinK representation ofU(su(2)) with integerK,
and consider the (free) commutative algebraA generated by these variables. Letg

ij
c be the

(real, symmetric) invariant tensor, so thata · a := aiajg
ij
c is invariant underU(su(2)), and

g
ij
c g

jk
c = δik. We now impose onA the star structure

a∗
i = g

ij
c aj , (3.26)

so thatA can be interpreted as the algebra of complex-valued functions onR2K+1; in
particular,a · a is real. Then the usual integral onR2K+1 defines a functional on (the subset
of integrable functions in a suitable completion of)A, which satisfies∫

d2K+1au� f = ε(u)

∫
d2K+1af,

(∫
d2K+1af

)∗
=
∫
d2K+1af∗ (3.27)

for u ∈ U(su(2)) and integrablef ∈ A. More general invariant functionals onA can be
defined as:

〈f 〉 :=
∫
d2K+1aρ(a · a)f (3.28)

for f ∈ A, whereρ is a suitable real weight function. They are invariant, real and
positive:

〈u � f 〉 = ε(u)〈f 〉, 〈f 〉∗ = 〈f ∗〉, 〈f ∗f 〉 ≥ 0 (3.29)

for any u ∈ U(su(2)) and f ∈ A. As usual, one can then define a Hilbert space of
square-(weight-) integrable functions by

〈f, g〉 := 〈f ∗g〉 =
∫
d2K+1aρ(a · a)f ∗g. (3.30)

Now consider the twistedUq(su(2))-module algebra(A,�, �q) defined in the previous
section. We want to find an integral onAwhich is invariant under the action�q ofUq(su(2)).
Formally, this is very easy: since thespaceA is unchanged by the twisting, we can simply
use the classical integral again, and verify invariance∫

d2K+1au�q f=
∫
d2K+1aϕ(u) � f = ε(ϕ(u))

∫
d2K+1af = εq(u)

∫
d2K+1af.
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Notice that the algebra structure ofA does not enter here at all. The compatibility with the
reality structure will be discussed in the next section.

Of course we have to restrict to certain classes of integrable functions. However, this is not
too hard in the cases of interest. Consider e.g., the space of Gaussian functions, i.e. functions
of the formP(ai)e−c(a·a) with suitable (polynomial, say)P(ai). Using(3.21), this is the
same as the space of Gaussian functions in the sense of the star product,P2(ai)e−c(a2a). This
will imply that all integrals occurring in perturbation theory are well-defined. Furthermore,
one can obtain a twisted sphere by imposing the relationa�a = a ·a = R2. On this sphere,
the integral is well-defined for any polynomial functions. The integral over the twisted
R2K+1 can hence be calculated by first integrating over the sphere and then over the radius.
Finally, we point out the following obvious fact:

〈P(a)〉 = 〈P0(a)〉, (3.31)

whereP0(a) ∈ A is the singlet part of the decomposition of the polynomialP(a) under the
action�q of Uq(su(2)), or equivalently under the action� of U(su(2)).

4. An Uq(su(2))-covariant operator formalism

In the previous section, we defined quasi-associative algebras of functions on arbitrary
representation spaces ofUq(su(2)). We will apply this to the coefficients of the fields on
S2
q,N later. However, there is an alternative approach within the framework of ordinary

operators and representations, which is essentially equivalent for our purpose. We shall
follow here closely the constructions in[15]. It seems that both approaches have their own
advantages, therefore, we want to discuss them both.

We first recall the notion of the semidirect product (cross-product) algebra, which is
useful here. Let(A, ·, �) be an associativeU(su(2))-module algebra. ThenU(su(2))�A
is the vector spaceA ⊗ U(su(2)), equipped with the structure of an associative algebra
defined byua = (u(1) � a)u(2). Hereu(1) ⊗ u(2) is the undeformed coproduct ofU(su(2)).

In the following, we shall be interested in representations ofA which have a “vacuum”
vector〉 such that all elements can be written in the formA〉, i.e. by acting withA on the
vacuum vector. In particular, we will denote withVA the free leftA-moduleA〉 which has
a vector space is equal toA. This will be called the “left vacuum representation” (or left
regular representation). Now any3 such representation ofA can naturally be viewed as a
representation ofU(su(2)) �A, if one declares the vacuum vector〉 to be a singlet under
U(su(2)),

u〉 = ε(u)〉,
andu � (a〉) = (u � a)〉. One can then verify the relations ofU(su(2))�A.

Inspired by[15], we define for anya ∈ A the element

â := (F−1
1 � a)F−1

2 ∈ U(su(2))�A. (4.1)

3 Provided the kernel of the representation is invariant underU(su(2)), which we shall assume.
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Using the definition of the Drinfel’d twist, it is immediate to verify the following properties:

â〉 = a〉, âb̂〉 = (a�b)〉, (4.2)

where(a�b) is the twisted multiplication onA defined in(3.2). More generally,

â1â2 · · · âk〉 = (a1�(a2�(· · · ak−1�ak) · · · ))〉 (4.3)

for any ai ∈ A. Hence the elementŝa realize the twisted product(3.2) onA, with this
particular bracketing. Ifc ∈ A is a singlet, or equivalently [c, U(su(2))] = 0 inU(su(2))�
A, then

ĉ = c. (4.4)

If in addition the algebraA is commutative, then̂c is central inU(su(2)) �A. Moreover,
the new variableŝai are automatically covariant under the quantum groupUq(su(2)), with
theq-deformed coproduct, denoting

û := ϕ(u) ∈ U(su(2))

for u ∈ Uq(su(2)), one easily verifies

ûâ = û1 �q aû2, (4.5)

whereu1 ⊗ u2 denotes theq-deformed coproduct. In particular,

ûâ〉 = u �q a〉 = û �q a〉, ûâb̂〉 = (û1 �q a)(û2 �q b)〉.
Therefore,Uq(su(2)) acts correctly on thêa-variables in the left vacuum representation.
More explicitly, assume thatA is generated (as an algebra) by generatorsai transforming in
the spinK representationπ ofU(su(2)), so thatuai = ajπ

j
i (u(1))u(2). Then(4.5)becomes

ûâi = âj π
j
i (û1)û2. (4.6)

In general, the generatorsâi will not satisfy closed commutation relations, even if theai
do. However, if [ai, aj ] = 0, then one can verify that (cf.[15])

âi âj = âkâlR
lk
ij , (4.7)

where

R
ij
kl = (πik ⊗ π

j
l ⊗ id)(φ̃213R̃12φ̃

−1
123) ∈ U(su(2)). (4.8)

Again, this involves only the coassociator and the universalR-matrix. Such relations for
field operators were already proposed in[16] on general grounds; here, they follow from
the definition(4.1). In the case of several variables, one finds

âi b̂j = b̂kâlR
lk
ij . (4.9)

Indeed, no closed quadratic commutation relations for deformed spaces of function with
generatorsai in arbitrary representations ofUq(su(2)) are known, which has been a major
obstacle for defining QFT’s onq-deformed spaces. In the present approach, the generatorsâi
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satisfy quadratic commutation relations which close only in the bigger algebraU(su(2))�A.
In general, they are not easy to work with. However, some simplifications occur if we use
minimal twistsF as defined inSection 2, as was observed by Fiore[15]:

Proposition 4.1. For minimal twistsF as in(2.13), the following relation holds:

gij âi âj = g
ij
c aiaj . (4.10)

Here

gij = πir (F1)π
j
s (F2)g

rs
c = gil

c π
j
l (γ

′), (4.11)

whereγ ′ is defined in(2.10). In particular ifA is abelian, this implies thatgjkâj âk is central
in U(su(2))�A.

We include a short proof inAppendix A for convenience. This will be very useful to
define a quantized field theory. From now on, we will always assume that the twists are
minimal.

Derivatives. LetA be again the free commutative algebra with generatorsai in the spin
K representation ofU(su(2)), and consider the left vacuum representationVA = A〉 of
U(su(2)) �A. Let ∂i be the (classical) derivatives, which act as usual on the functions in
A. They can be considered as operators acting onVA, and as such they satisfy the relations
of the classical Heisenberg algebra,∂iaj = gcij + aj ∂i . Now define

∂̂i := (F−1
1 � ∂i)F−1

2 , (4.12)

which is an operator acting onVA = A〉; in particular, it satisfieŝ∂i〉 = 0. Then the
following relations holds:

Proposition 4.2. For minimalF as in(2.13), the operatorŝai , ∂̂j acting on the left vacuum
representation satisfy

∂̂i (g
jkâj âk) = 2âi + (gjkâj âk)∂̂i , (4.13)

∂̂i âj = gij + âk ∂̂lR
lk
ij . (4.14)

The proof is given inAppendix A; the second relation(4.14) is again very close to a
result (Proposition 6) in[15], and it holds in fact inU(su(2))�A. Of course, the brackets
in (4.13)were just inserted for better readability, unlike inLemma 3.2where they were
essential. If we have algebras with several variables in the same representation, then e.g.

∂̂ai (g
jkb̂j âk) = b̂i + (gjkb̂j âk)∂̂ai (4.15)

holds, in self-explanatory notation.
One advantage of this approach compared to the quasi-associative formalism in the pre-

vious section is that the concept of a star is clear, induced from Hilbert space theory. This
will be explained next.
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4.1. Reality structure

Even though the results of this section are more general, we assume for simplicity that
A is the free commutative algebra generated by the elements{ai} which transform in
the spinK representation ofU(su(2)) with integerK, i.e. the algebra of complex-valued
functions onR2K+1 (or products thereof). Then the classical integral defines an invariant
positive functional onA which satisfies(3.29), andVA becomes a Hilbert space(3.30)
(after factoring out a null space if necessary). Hence we can calculate the operator adjoint
of the generators of this algebra. By construction,

a∗
i = g

ij
c aj ,

wheregij
c is the invariant tensor, normalized such thatg

ij
c g

jk
c = δik. As discussed above,

VA is a representation of the semidirect productU(su(2))�A, in particular it is a unitary
representation ofU(su(2)). Hence the star on the generators ofU(su(2)) is

H ∗ = H, X±∗ = X∓.

Now one can simply calculate the star of the twisted variablesâi ∈ U(su(2)) � A. The
result is as expected.

Proposition 4.3. If F is a minimal unitary twist as inProposition 2.1, then the adjoint of
the operatorâi acting on the left vacuum representationA〉 is

â∗
i = gij âj . (4.16)

This is proved inAppendix A, and it was already found in[15]. It is straightforward to extend
these results to the case of several variablesa

(K)
i , b

(L)
j , . . . in different representations, using

a common vacuum〉. The star structure is always of the form(4.3).
If A is the algebra of functions onR2K+1, we have seen above that the left vacuum

representationA〉 is also a representation of the Heisenberg algebraAH with generators
ai, ∂j . Again we can calculate the operator adjoints, and the result is

∂∗
i = −gij

c ∂j , ∂̂∗
i = −gij ∂̂j .

Of course, all these statements are on a formal level, ignoring operator-technical subtleties.

4.2. Relation with the quasi-associative�-product

Finally, we make a simple but useful observation, which provides the connection of the
operator approach in this section with the quasi-associative approach ofSection 3. Observe
first that an invariant (real, positive(3.29)) functional〈 〉 onA extends trivially as a (real,
positive) functional onU(su(2))�A, by evaluating the generators ofU(su(2)) on the left
(or right) ofA with the counit. Now for any tensorI i1···ik of Uq(su(2)), denote

I (â) := I i1···ik âi1 · · · âik ∈ U(su(2))�A,
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and

I2(a) := I i1···ik ai1�(· · · �(aik−1�aik ) · · · ) ∈ A. (4.17)

Then the following holds:

Lemma 4.4.

1) If I = I i1···ik is an invariant tensor ofUq(su(2)), thenI (â) as defined above commutes
with u ∈ Uq(su(2)),

[u, I (â)] = 0 in U(su(2))�A. (4.18)

2) Let s〉 ∈ A〉 be invariant, i.e.u · s〉 = εq(u)s〉, and I, . . . , J be invariant tensors of
Uq(su(2)). Then

I (â) · · · J (â)s〉 = I2(a)� · · · �J2(a)s〉.
3) LetI, J be invariant, andP = P i1···ik be an arbitrary tensor ofUq(su(2)). Denote with

P0 the trivial component of P under the action ofUq(su(2)). Then for any invariant
functional〈 〉 onA,

〈I (â) · · · J (â)P (â)〉 = 〈I (â) · · · J (â)P0(â)〉 = 〈I2(a)� · · · �J2(a)(P0)2(a)〉
= 〈I2(a)� · · · �J2(a)�P2(a)〉. (4.19)

Moreover, if A is abelian, then theI (â), J (â), etc. can be considered as central in an
expression of this form, e.g.

〈I (â) · · · J (â)P (âi)〉 = 〈P(âi)I (â) · · · J (â)〉 = 〈P(âi)J (â) · · · I (â)〉
and so on.

The proof follows easily from(4.3) and (4.5)andLemma 3.1. The stars between the invariant
polynomialsI2(a), . . . , J2(a) are of course trivial, and no brackets are needed.

5. Twisted Euclidean QFT

These tools can now be applied to our problem of quantizing fields on theq-deformed
fuzzy sphereS2

q,N . Most of the discussion is not restricted to this space, but it is on a
much more rigorous level there because the number of modes is finite. We will present two
approaches, the first based on twisted� products as defined inSection 3, and the second
using an operator formalism as inSection 4. Both have their own merits which seem to
justify presenting them both. Their equivalence will follow fromLemma 4.4.

First, we discuss some basic requirements for a QFT on spaces with quantum group
symmetry. Consider a scalar field, and expand it in its modes as

Ψ (x) =
∑
K,n

ψK,n(x)a
K,n. (5.1)
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Here theψK,n(x) ∈ S2
q,N are a basis of the spinK representation ofUq(su(2)),

u �q ψK,n(x) = ψK,m(x)π
m
n (u) (5.2)

and the coefficientsaK,n transform in the dual (contragredient) representation ofŨq(su(2)),

u�̃qaK,n = πnm(S̃u)a
K,m. (5.3)

It is important to distinguish the Hopf algebras which act on the coefficientsaK,n and on the
functionsψK,n(x), respectively. The Hopf algebrãUq(su(2)) is obtained fromUq(su(2)) by
flipping the coproduct and using the opposite antipodeS̃ = S−1. In particular, theR-matrix
and the invariant tensors are also flipped:

g̃Knm = gKmn, (5.4)

whereg̃Knm is the invariant tensor of̃Uq(su(2)). The reason for this will become clear soon.
Moreover, it is sometimes convenient to express the contragredient generators in terms of
“ordinary” ones,

aK,n = g̃Knma
K,m. (5.5)

ThenŨq(su(2)) acts as

u�̃qaK,n = aK,mπ
m
n (u).

We assume that the coefficientsaK,n generate some algebraA. This is not necessarily the
algebra of field operators, which in fact would not be appropriate in the Euclidean case even
for q = 1. Rather,A could be the algebra of coordinate functions on configuration space
(space of modes) forq = 1, and an analog thereof forq �= 1. The fieldsΨ (x) can then be
viewed as “algebra-valued distributions” in analogy to usual field theory, by defining

Ψ [f ] :=
∫
S2
q,N

Ψ (x)f (x) ∈ A

for f (x) ∈ S2
q,N . Then the covariance properties(5.2) and (5.3)could be stated as:

u�̃qΨ [f ] = Ψ [u �q f ], (5.6)

using the fact that
∫
(u �q f )g = ∫

f (S(u) � g).
Our goal is to define some kind of correlation functions of the form

〈Ψ [f1]Ψ [f2] · · ·Ψ [fk]〉 ∈ C (5.7)

for anyf1, . . . , fk ∈ S2
q,N , in analogy to the undeformed case. After “Fourier transformation”

(5.1), this amounts to defining objects

GK1,n1;K2,n2;... ;Kk,nk := 〈aK1,n1aK2,n2 · · · aKk,nk 〉 =: 〈P(a)〉, (5.8)

whereP(a) will denote some polynomial in theaK,n from now on, perhaps by some kind
of a “path integral”〈P(a)〉 = (1/N )

∫
Da e−S[Ψ ]P(a). We require that they should satisfy

at least the following properties, to be made more precise later:
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(1) Covariance:

〈u�̃qP (a)〉 = εq(u)〈P(a)〉, (5.9)

which means that theGK1,n1;K2,n2;... ;Kk,nk are invariant tensors of̃Uq(su(2)),
(2) Hermiticity:

〈P(a)〉∗ = 〈P ∗(a)〉 (5.10)

for a suitable involution∗ onA,
(3) Positivity:

〈P(a)∗P(a)〉 ≥ 0, (5.11)

(4) Symmetry: under permutations of the fields, in a suitable sense discussed below.

This will be our heuristic “working definition” of a quantum group covariant Euclidean
QFT.

In particular, the word “symmetry” in (4) needs some explanation. The main purpose of a
symmetrization property is that it puts a restriction on the number of degrees of freedom in
the model, which in the limitq → 1 should agree with the undeformed case. More precisely,
the amount of information contained in the correlation functions(5.8)should be the same as
for q = 1, i.e. the Poincaré series ofA should be the same. This means that the polynomials
in theaK,n can be ordered as usual, i.e. they satisfy some kind of “Poincaré–Birkhoff–Witt”
property. This is what we mean with “symmetry” in (4). In more physical terms, it implies
the statistical properties of bosons.4

However, it is far from trivial how to impose such a “symmetry” on tensors which are
invariant under a quantum group. Ordinary symmetry is certainly not consistent with covari-
ance under a quantum group. One might be tempted to replace “symmetry” by some kind of
invariance under the braid group which is naturally associated to any quantum group. This
group is generally much bigger than the group of permutations, however, and such a re-
quirement is qualitatively different and leaves fewer degrees of freedom. The properties (3)
and (4) are indeed very non-trivial requirements for a QFT with a quantum group spacetime
symmetry, and they are not satisfied in the proposals that have been given up to now, to the
knowledge of the authors.

Covariance (1) suggests that the algebraA generated by theaK,n is aUq(su(2))-module
algebra. This implies immediately thatA cannot be commutative because the coproduct of
Uq(su(2)) is not cocommutative. The same conclusion can be reached by contemplating the
meaning of invariance of an actionS[Ψ ], which will be clarified below. One could even say
that a second quantization is required by consistency. As a further guiding line, the above
properties (1)–(4) should be verified easily in a “free” field theory.

In general, there is no obvious candidate for an associative algebraA satisfying all these
requirements. We will construct a suitable quasi-associative algebraA as a star-deformation
of the algebra of functions on configuration space along the lines ofSection 3, which satisfies
these requirements. Our approach is rather general and should be applicable in a more
general context, such as for higher-dimensional theories. Quasi-associativity implies that

4 We do not consider fermions here.
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the correlation functions(5.7)make sense only after specifying the order in which the fields
should be multiplied (by explicitly putting brackets), however, different ways of bracketing
are always related by a unitary transformation. Moreover, the correct number of degrees
of freedom is guaranteed by construction. We will then define QFTs which satisfy the
above requirements using a path integral over the fieldsΨ (x), i.e. over the modesaK,n. An
associative approach will also be presented inSection 5.2, which is essentially equivalent.

5.1. Star-product approach

The essential step is as follows. Using the mapϕ (2.1), the coefficientsaK,n transform also
under the spinK representation ofU(su(2)), via u�̃aK,n = ϕ−1(u)�̃qaK,n. Hence we can
consider the usual commutative algebraAK of functions onR2K+1 generated by theaK,n,
and view it as a leftU(su(2))-module algebra(AK, ·, �̃). As explained inSection 3, we can
then obtain from it the left̃Uq(su(2))-module algebra(AK,�, �̃q), with multiplication� as
defined in(3.2). More generally, we consider the leftŨq(su(2))-module algebra(A,�, �̃q)
whereA = ⊗N

K=0A
K . Notice that the twistF̃ corresponding to the reversed coproduct

must be used here, which is simplỹF12 = F21. The reality issues will be discussed in
Section 5.2.

Invariant actions. Consider the following candidate for an invariant action

Sint[Ψ ] =
∫
S2
q,N

Ψ (x)�(Ψ (x)�Ψ (x)). (5.12)

Assuming that the functions onS2
q,N commute with the coefficients, [xi, aK,n] = 0, this

can be written as:

Sint[Ψ ] =
∫
S2
q,N

ψK,n(x)ψK ′,m(x)ψK ′′,l(x)a
K,n�(aK

′,m�aK
′′,l)

= I
(3)
K,K ′,K ′′;n,m,la

K,n�(aK
′,m�aK

′′,l) ∈ A. (5.13)

Here5 I
(3)
K,K ′,K ′′;n,m,l = ∫

S2
q,N

ψK,nψK ′,mψK ′′,l is by construction an invariant tensor of

Uq(su(2)),

I
(3)
K,K ′,K ′′;n,m,lπ

n
r (u1)π

m
s (u2)π

l
t (u3) = εq(u)I

(3)
K,K ′,K ′′;r,s,t . (5.14)

We have omitted the labels on the various representations. HenceSint[Ψ ] is indeed an
invariant element ofA:

u�̃qSint[Ψ ] = I
(3)
K,K ′,K ′′;n,m,lπ

n
r (S̃u1̃)π

m
s (S̃u2̃)π

l
t (S̃u3̃)a

K,r�(aK
′,s�aK

′′,t )

= εq(u)Sint[Ψ ]

using(5.14), whereu1̃ ⊗ u2̃ ⊗ u3̃ is the twofold coproduct ofu ∈ Ũq(su(2)); notice that
the antipode reverses the coproduct. This is the reason for usingŨq(su(2)).

5 Note that the brackets are actually not necessary here because of(2.20). For higher-order terms they are
essential, however.
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In general, our actionsS[Ψ ] will be polynomials inA, and we shall only consider invariant
actions,

u�̃qS[Ψ ] = εq(u)S[Ψ ] ∈ A (5.15)

for u ∈ Ũq(su(2)). It is important to note that byLemma 3.1, the star product of any
such invariant actions is commutative and associative, even though the full algebra of the
coefficients(A,�) is not. Moreover, we only consider actions which are obtained using an
integral overS2

q,N as in(5.12), which we shall refer to as “local”.
In particular, consider the quadratic action

S2[Ψ ] =
∫
S2
q,N

Ψ (x)�Ψ (x),

which can be rewritten as

S2[Ψ ] =
∫
S2
q,N

ψK,n(x)ψK,m(x)a
K,n�aK,m =

N∑
K=0

gKnma
K,n�aK,m

=
N∑

K=0

g̃Kmna
K,n�aK,m. (5.16)

Here we assumed that the basisψK,n(x) is normalized such that∫
S2
q,N

ψK,n(x)ψK ′,m(x) = δK,K ′gKn,m. (5.17)

This action is of course invariant,u�̃qS2[Ψ ] = εq(u)S2[Ψ ]. Moreover, the invariant
quadratic actions agree precisely with the classical ones. Indeed, the most general invariant
quadratic action has the form

Sfree[Ψ ] = 1

2

N∑
K=0

DKg
K
nma

K,n�aK,m = 1

2

N∑
K=0

DK(g
K
c )nma

K,n · aK,m (5.18)

using(3.21), for someDK ∈ C. This will allow to derive Feynman rules from Gaussian
integrals as usual.

Quantization: path integral. We will define the quantization by a (configuration space)
path integral, i.e. some kind of integration over the possible values of the coefficientsaK,m.
This integral should be invariant underŨq(su(2)). FollowingSection 3.1, we considerAK

as the vector space of complex-valued functions onR2K+1, and use the usual classical
integral overR2K+1. Recall that the algebra structure ofAK does not enter here at all. The
same approach was used in[10] to define the quantization of the undeformed fuzzy sphere,
and an analogous approach is usually taken on spaces with a star product[28]. Notice thatK
is an integer, since we do not consider fermionic fields here. Explicitly, let

∫
d2K+1aKf be

the integral of an elementf ∈ AK overR2K+1. It is invariant under the action of̃Uq(su(2))
(or equivalently underU(su(2))) as discussed inSection 3.1:∫

d2K+1aKu�̃qf = εq(u)

∫
d2K+1aKf.



224 H. Grosse et al. / Journal of Geometry and Physics 43 (2002) 205–240

Now we define∫
DΨf [Ψ ] :=

∫ ∏
K

d2K+1aKf [Ψ ],

wheref [Ψ ] ∈ A is any integrable function (in the usual sense) of the variablesaK,m.
This will be our path integral, which is by construction invariant under the action�̃q of
Ũq(su(2)).

Correlation functions can now be defined as functionals of “bracketed polynomials”
P2(a) = aK1,n1�(aK2,n2�(· · · �aKl,nl )) in the field coefficients by

〈P2(a)〉 :=
∫
DΨ e−S[Ψ ]P2(a)∫
DΨ e−S[Ψ ]

. (5.19)

This is natural, because all invariant actionsS[Ψ ] commute with the generatorsaK,n. Strictly
speaking there should be a factor 1/� in front of the action, which we shall omit. In fact
there are now three different “quantization” parameters:� has the usual meaning, whileN
andq − q−1 determines a quantization or deformation of space.

Invariance of the actionS[Ψ ] ∈ A implies that

〈u�̃qP2(a)〉 = εq(u)〈P2(a)〉, (5.20)

and therefore

〈P2(a)〉 = 〈(P0)2(a)〉, (5.21)

whereP0 is the singlet part of the polynomialP , as inLemma 4.4. These are the desired
invariance properties, and they would not hold if theaK,n were commuting variables. By
construction, the number of independent modes of a polynomialP2(a)with given degree is
the same as forq = 1. One can in fact order them, using quasi-associativity together with
the commutation relations(3.10)which of course also hold under the integral:

〈P2(a)�((ai�aj − ak�alR̃
lk
ij )�Q2(a))〉 = 0 (5.22)

for any polynomialsP2(a),Q2(a) ∈ A. This can also be verified using the perturbative
formula (5.27)below. Therefore, the symmetry requirement (4) ofSection 5is satisfied.
Moreover, the following cyclic property holds:

〈ai�P2(a)〉 = 〈P2(a)�ak〉D̃k
i , D̃k

i = g̃kng̃in (5.23)

for anyP2(a). This follows using(5.21)and the well-known cyclic property of theq-deformed
invariant tensor̃gij .

In general, the use of quasi-associative algebras for QFT is less radical than one might
think, and it is consistent with results of[17] on boundary correlation functions in BCFT.
Before addressing the issue of reality, we develop some tools to actually calculate such
correlation functions in perturbation theory.

Currents and generating functionals.One can now introduce the usual tools of QFT. We
introduce (external) currentsJ (x) by

J (x) =
∑
K,n

ψK,n(x)j
K,n, (5.24)
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where the new generatorsjK,n are included into thẽUq(su(2))-module algebraA, again
by the twisted product(3.2). We can then define a generating functional

Z[J ] = 1

N

∫
DΨ e−S[Ψ ]+∫ Ψ (x)�J (x), (5.25)

which is an element ofAbut depends only on the current variables. HereN = ∫
DΨ e−S[Ψ ] .

Note that∫
Ψ (x)�J (x) =

∫
J (x)�Ψ (x),

which follows, e.g. from(5.18). Invariance of the functional integral implies that

u�̃qZ[J ] = εq(u)Z[J ] (5.26)

for anyu ∈ Ũq(su(2)), provided the actionsS[Ψ ] are invariant.
It is now useful to introduce derivatives∂K,n(j) similar to(3.18), which together with the

currents form a twisted (quasi-associative) Heisenberg algebra as explained in the previous
section

∂K(j)n�jK
′

m = δK,K ′ g̃Knm + jK
′

r �∂K(j)sR̃
sr
nm.

By a calculation analogous to(3.24), it follows that

∂
K,n
(j)

(∫
Ψ (x)�J (x)

)
= aK,n +

(∫
Ψ (x)�J (x)

)
∂
K,n
(j) .

Recall that it is not necessary to put a star if one of the factors is a singlet.
This is exactly what we need. We conclude immediately that [∂

K,n
(j) ,exp(

∫
Ψ�J )] =

aK,n exp(
∫
Ψ�J ), and by an inductive argument it follows that the correlation functions

(5.19)can be written as

〈P2(a)〉 = J=0〈P2(∂(j))Z[J ]〉∂=0. (5.27)

Here J=0〈· · · 〉∂=0 means ordering the derivatives to the right of the currents andthen
settingJ and∂(j) to 0. The substitution of derivatives into the bracketed polynomialP2
is well-defined, because the algebra of the generatorsa is the same as the algebra of the
derivatives∂(j).

The usual perturbative expansion can now be obtained easily. Consider a quadratic action
of the form

Sfree[Ψ ] =
∫
S2
q,N

1

2
Ψ (x)�DΨ (x),

whereD is an invariant (e.g. differential) operator onS2
q,N , so thatDΨ (x) = ∑

ψK,n(x)

DKa
K,n with DK ∈ C. It then follows as usual that

Zfree[J ] := 1

Nfree

∫
DΨ e−Sfree[Ψ ]+∫ Ψ (x)�J (x) = e1/2

∫
J (x)�D−1J (x). (5.28)
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This implies that after writing the full action in the formS[Ψ ] = Sfree[Ψ ] + Sint[Ψ ], one
has

Z[J ] = 1

N

∫
DΨ e−Sint [Ψ ] e−Sfree[Ψ ]+∫ Ψ (x)�J (x) = 1

N ′ e
−Sint [∂(j)]Zfree[J ]〉∂=0.

(5.29)

This is the starting point for a perturbative evaluation. In the next section, we shall cast this
into a form which is even more useful, and show that the “vacuum diagrams” cancel as usual.

Relation with the undeformed case. There is a conceptually simple relation of all the above
models which are invariant underŨq(su(2)) with models on the undeformed fuzzy sphere
which are invariant underU(su(2)), at the expense of “locality”. First, note that the space
of invariant actions(5.15)is independent ofq. More explicitly, consider an interaction term
of the form(5.13). If we write down explicitly the definition of the� product of theaK,n

variables, then it can be viewed as an interaction term ofaK,n variables with a tensor which
is invariant under theundeformedU(su(2)), obtained fromI (3)

K,K ′,K ′′;n,m,l by multiplication
with representations ofF . In the limit q = 1, thisF becomes trivial. In other words, the
above actions can also be viewed as actions on undeformed fuzzy sphereS2

q=1,N , with

interactions which are “non-local” in the sense ofS2
q=1,N , i.e. they are given by traces of

products of matrices only to the lowest order in(q − 1). Upon spelling out the� product
in the correlation functions(5.19)as well, they can be considered as ordinary correlation
functions of a slightly non-local field theory onS2

q=1,N , disguised by the transformationF .
In this sense,q-deformation simply amounts to some kind of non-locality of the interac-

tions. A similar interpretation is well known in the context of field theories on spaces with a
Moyal product[28]. The important point is, however, that one can calculate the correlation
functions forq �= 1withoutusing the twistF explicitly, using onlyR̂-matrices and the coas-
sociatorsφ̃, which are much easier to work with. This should make theq-deformed point
of view useful. It is also possible to generalize these results to otherq-deformed spaces.

5.2. Associative approach

In order to establish the reality properties of the field theories introduced above, it is easier
to use an alternative formulation, using the results ofSection 4. The equivalence of the two
formulations will follow fromSection 4.2. This will also allow to define field operators for
second-quantized models in 2+ 1 dimensions inSection 6.4.

Consider the left vacuum representationsVA = A〉 ofA = ⊗KAK introduced inSection
4, and define the operators6

âK,n = (F̃−1
1 � aK,n)F̃−1

2 ∈ U(su(2))�A (5.30)

acting onA〉. We can then more or less repeat all the constructions of the previous section
with ak,n replaced bŷaK,n, omitting the� product. The covariance property(5.6)of the field

Ψ̂ (x) =
∑
K,n

ψK,n(x)â
K,n (5.31)

6 They should not be considered as field operators.
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can now be written in the form

Ψ [u �q f ] = u1̃Ψ [f ]S̃u2̃.

Invariant actions can be obtained by contracting theâK,n with invariant tensors of̃Uq(su(2)),
and satisfy

[u, S[Ψ̂ ]] = 0

for7 u ∈ Ũq(su(2)). For example, any actions of the form

S[Ψ̂ ] =
∫
S2
q,N

1

2
Ψ̂ (x)DΨ̂ (x)+ λΨ̂ (x)Ψ̂ (x)Ψ̂ (x)

= Sfree[Ψ̂ ] + Sint[Ψ̂ ] ∈ U(su(2))�A

are invariant, whereD is defined as before. UsingProposition 4.1, the quadratic invari-
ant actions again coincide with the undeformed ones. In general, higher-order actions are
elements ofU(su(2)) � A but not ofA. Nevertheless, as explained inSection 4.2, all
such invariant actionsS[Ψ̂ ] are in one-to-one correspondence with invariant actions in the
�-product approach, with brackets as in(4.17). This will be understood from now on.

Consider again the obvious (classical) functional
∫ ∏

K d
2K+1aK onA (or VA) as in

the previous section, and recall fromSection 4.2that it extends trivially to a functional on
U(su(2)) � A, by evaluatingU(su(2)) with ε. We will denote this functional by

∫
DΨ̂ .

Define correlation functions of polynomials in theâK,n variables as

〈P(â)〉 :=
∫
DΨ̂ e−S[Ψ̂ ]P(â)∫
DΨ̂ e−S[Ψ̂ ]

= 〈P0(â)〉. (5.32)

HereP0 is again the singlet part of the polynomialP . ThenLemma 4.4implies

〈P(â)〉 = 〈P2(a)〉, (5.33)

always assuming that the actionsS[Ψ̂ ] are invariant underUq(su(2)). This shows the equiv-
alence with the approach of the previous section. Moreover,

〈P(â)âi âjQ(â)〉 = 〈P(â)âkâlRlk
ij Q(â)〉, (5.34)

follows from(4.7), or from(5.37)below on the perturbative level.
Currents and generating functionals. We can again extendA by other variables such as

currents

Ĵ (x) =
∑
K,n

ψK,n(x)ĵ
K,n ∈ U(su(2))�A (5.35)

and consider the generating functional

Z[Ĵ ] = 1

N

∫
DΨ̂ e−S[Ψ̂ ]+∫ Ψ̂ (x)Ĵ (x)〉 (5.36)

7 Recall that as algebra, there is no difference betweenU(su(2)) andŨq (su(2)).
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with Z[0] = 1. This is defined as the element ofA〉 ∼= A obtained after integrating over the
aK -variables; the result depends on the currents only. The brace〉 indicates that the explicit
U(su(2)) factors inU(su(2))�A are evaluated byε. Again,Lemma 4.4implies thatZ[Ĵ ]
agrees precisely with the previous definition(5.25).

As explained inSection 4, one can consider also the twisted derivative operators∂̂
K,n
(j) ,

which act onA〉. UsingProposition 4.2, we can derive essentially the same formulas as in
the previous section, omitting the star product. In particular,(4.15)implies that

∂̂
K,n
(j)

(∫
Ψ̂ (x)Ĵ (x)

)
= âK,n +

(∫
Ψ̂ (x)Ĵ (x)

)
∂̂
K,n
(j) .

Since invariant elements ofA are central as was pointed out below(4.4), we obtain as usual

〈P(â)〉 = J=0〈P(∂̂(j))Z[Ĵ ]〉∂=0, (5.37)

Z[Ĵ ] = 1

N

∫
DΨ̂ e−(Sfree[Ψ̂ ]+Sint [Ψ̂ ])+∫ Ψ̂ (x)Ĵ (x)〉 = 1

N ′ e−Sint [∂̂(j)]Zfree[Ĵ ]〉∂=0,

Zfree[Ĵ ] = 1

Nfree

∫
DΨ̂ e−Sfree[Ψ̂ ]+∫ Ψ̂ (x)Ĵ (x)〉 = e1/2

∫
Ĵ (x)D−1Ĵ (x)〉. (5.38)

Even though these formulas can be used to calculate correlators perturbatively, there is
a form which is more convenient for such calculations. To derive it, observe that(4.13)
implies

∂̂
K,n
(j) e1/2

∫
Ĵ (x)D−1Ĵ (x) = e1/2

∫
Ĵ (x)D−1Ĵ (x)(D−1

K ĵK,n + ∂̂
K,n
(j) ), (5.39)

one can indeed verify that the algebra of

b̂K,n = D−1
K ĵK,n + ∂̂

K,n
(j) (5.40)

is the same as the algebra ofâK,n. Therefore,(5.37)can be rewritten as

〈P(â)〉 = 1

N ′ J=0〈P(∂̂(j))e−Sint [∂̂(j)] e1/2
∫
Ĵ (x)D−1Ĵ (x)〉∂=0

= 1

N ′ J=0〈e1/2
∫
ĴD−1Ĵ P (b̂)e−Sint [b̂]〉∂=0 = J=0〈P(b̂)e−Sint [b̂]〉∂=0

J=0〈e−Sint [b̂]〉∂=0

. (5.41)

To evaluate this, one reinserts the definition(5.40)of b̂ as a sum of derivative operators
∂̂ and current generatorŝj . Each∂̂ must be “contracted” with âj to the right of it using
the commutation relations(4.14), which gives the inverse propagatorD−1

K , and the result
is the sum of all possible complete contractions. This is the analog of Wick’s theorem.
The contractions can be indicated as usual by pairing up theb̂ variables with a line, before
actually reordering them. Then each contribution can be reconstructed uniquely from a
given complete contraction; this could be stated in terms of Feynman rules.

One can also show that the denominator exactly cancels the “vacuum bubbles” in the
numerator, as usual. Indeed, consider any given complete contraction of a term

b̂ · · · b̂ 1

n!
(Sint[b̂])n.
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Mark the set of vertices which are connected (via a series of contractions) to some of the
explicit b̂ generators on the left with blue, and the others with red. Then two neighboring
red and blue vertices can be interchanged keeping the given contractions, without changing
the result. This is because only the homogeneous part of the commutation relations8 (4.14)
applies, and all vertices are singlets (cf.Lemma 4.4). Therefore, the red vertices can be
moved to the right of the blue ones, and their contractions are completely disentangled.
Then the usual combinatorics yields

〈P(â)〉 = J=0〈P(b̂)e−Sint [b̂]〉∂=0,no vac (5.42)

in self-explanatory notation. Of course this also holds in the quasi-associative version, but
the derivation is perhaps less transparent.

In general, it is not easy to evaluate these expressions explicitly, because of the coasso-
ciators. However, the lowest-order corrections o(h) whereq = eh are easy to obtain, using
the fact thatφ̃ = 1 + o(h2) for minimal twists(2.13). If we write

R12 = 1 + hr12 + o(h2),

then

R̃12 = R12

√
R21R12

−1 = 1 + 1
2h(r12 − r21)+ o(h2),

which allows to find the leading o(h) corrections to the undeformed correlation functions
explicitly.

Reality structure. One advantage of this formalism is that the reality structure is naturally
induced from the Hilbert spaceVA, as explained inSection 4.1. UsingProposition 4.3and
noting that theaK,m are in the contragredient representation ofU(su(2)), it follows that

(âK,n)∗ = g̃Knmâ
K,m. (5.43)

We shall assume that all the actions are real

S[Ψ̂ ]∗ = S[Ψ̂ ],

this will be verified in the examples below. Moreover, the classical integral defines a real
functional onU(su(2))�A. Hence we conclude that the correlation functions satisfy

〈P(â)〉∗ = 〈P(â)∗〉. (5.44)

One can also show that

ψI,i(x)
∗ = gIijψI,j (x), (5.45)

wheregIij is normalized such thatgIij = (gI )ij . Therefore,

Ψ̂ (x)∗ = Ψ̂ (x), (5.46)

using(5.4). This is useful to establish the reality of actions. Of course, one could also con-
sider complex scalar fields. Finally, the correlation functions satisfy the positivity property

〈P(â)∗P(â)〉 ≥ 0, (5.47)

8 Associativity helps here.
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provided the actions are real. This is a simple consequence of the fact thatP(â)∗P(â) is a
positive operator acting on the left vacuum representation, together with the positivity of
the functional integral. It is one of the main merits of the present approach.

6. Examples

6.1. The free scalar field

Consider the action

Sfree[Ψ ] = −
∫
S2
q,N

1

2
Ψ̂ (x)��Ψ̂ (x). (6.1)

Here the Laplacian was defined in[1] using a differential calculus as� = ∗Hd ∗H d, and
satisfies9

�ψK,n(x) = 1

R2
[K]q [K + 1]qψK,n(x) ≡ DKψK,n(x),

where [K]q = (qK − q−K)/(q − q−1). The basisψK,n(x) is normalized as in(5.17). The
action is real by(5.46), and can be rewritten as

Sfree[Ψ̂ ] = −
∑
K,n

1

2
DKg̃

K
nmâ

K,mâK,n = −
∑
K,n

1

2
DK(g̃

K)mnâK,mâK,n,

using(5.5). As a first exercise, we calculate the 2-point functions. From(5.37) and (5.38),
one finds

〈âKn âK
′

n′ 〉 = J=0〈∂̂Kn ∂̂K
′

n′ Zfree[Ĵ ]〉∂=0 = J=0

〈
1

2
∂̂Kn ∂̂

K ′
n′
(∑

(g̃K)rsĵKr D
−1
K ĵKs

)〉
∂=0

=D−1
K J=0〈∂̂Kn ĵK

′
n′ 〉∂=0 = D−1

K δKK′
g̃Knn′ ,

where(4.13)was used in the last line. This result is as expected, and it could also be obtained
by using explicitly the definition of the twisted operatorsâK .

The calculation of the 4-point functions is more complicated, since it involves the coas-
sociator. To simplify the notation, we consider the (most complicated) case where all gen-
eratorsaK have the same spinK, which will be suppressed. The result for the other cases
can then be deduced easily. We also omit the prescriptions(∂ = 0) etc. Using first the
associative formalism(5.41)yields

〈ânâmâkâl〉 = 〈(D−1ĵn + ∂̂n)(D
−1ĵm + ∂̂m)(D

−1ĵk + ∂̂k)(D
−1ĵl + ∂̂l)〉

= 〈∂̂n(D−1ĵm + ∂̂m)(D
−1ĵk + ∂̂k)D

−1ĵl〉 = D−2〈∂̂nĵmg̃kl + ∂̂n∂̂mĵkĵl〉
=D−2〈g̃nmg̃kl + ∂̂n∂̂mĵkĵl〉.

9 It is rescaled from the one in[1] so that its eigenvalues are independent ofN .
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To evaluate this, consider

〈∂̂n∂̂mĵkĵl〉 = 〈∂̂n(g̃mk + ĵa ∂̂bR
ba
mk)ĵl〉 = g̃mkg̃nl + 〈∂̂nĵa ∂̂bĵsπsl (Rba

mk)〉
= g̃mkg̃nl + g̃nag̃bs(φ̃213R̃12φ̃

−1)bas
mkl.

Collecting the result, we recognize the structure of Wick contractions which are given by
the invariant tensor for neighboring indices, but involve theR̃-matrix and the coassociator
φ̃ for “non-planar” diagrams.

To illustrate the quasi-associative approach, we calculate the same 4-point function using
the� product. Then

〈an�(am�(ak�al))〉 = 〈∂n�((D−1jm + ∂m)�((D
−1jk + ∂k)�D

−1jl))〉
=D−2g̃nmg̃kl +D−2〈∂n�(∂m�(jk�jl))〉

using an obvious analog of(5.41). Now

〈∂n�(∂m�(jk�jl))〉 = 〈∂n�((∂m′�jk′)�jl′)〉(φ̃−1)m
′k′l′

mkl

= g̃nl′ g̃m′k′(φ̃−1)m
′k′l′

mkl + 〈∂n�((jm′′�∂k′′R̃k
′′m′′
m′k′ )�jl′)〉(φ̃−1)m

′k′l′
mkl

= g̃nlg̃mk + 〈∂n�(jm′�(∂k′�jl′))〉(φ̃213R̃12φ̃
−1)k

′m′l′
mkl

= g̃nlg̃mk + g̃nm′ g̃k′l′(φ̃213R̃12φ̃
−1)k

′m′l′
mkl

in agreement with our previous calculation; here the identity(A.4) was used. As pointed
out before, the corrections to order o(h) can now be obtained easily.

6.2. Remarks onN → ∞ andφ4 theory

The above correlators for the free theory are independent ofN , as long as the spin of the
modes is smaller thanN . Therefore, one can define the limitN → ∞ in a straightforward
way, keepingR constant. In this limit, the algebra of functions on theq-deformed fuzzy
sphere becomes

ε
ij
k xixj = R(q − q−1)xk, gijxixj = R2, (6.2)

which definesS2
q,N=∞. It has a unique faithful (infinite-dimensional) Hilbert space repre-

sentation[9].
In an interacting theory, the existence of the limitN → ∞ is of course a highly non-trivial

question. Consider e.g., theφ4 model, with action

S[Ψ ] =
∫
S2
q,N

1

2
Ψ̂ (x)�Ψ̂ (x)+ 1

2
m2Ψ̂ (x)2 + λΨ̂ (x)4 = Sfree + Sint

which is real, using(5.46). We want to study the first-order corrections inλ to the 2-point
function〈âKi âKj 〉 using(5.42):

〈âKi âKj 〉

=J=0

〈
b̂Ki b̂

K
j

(
1−λ

∫
S2
q,N

ψI,k(x)ψJ,l(x)ψL,m(x)ψM,n(x)b̂Ik b̂
J
l b̂

L
mb̂

M
n

)〉
∂=0,no vac

.
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We only consider the “leading” planar tadpole diagram. It is given by any contraction of
the b̂Ki andb̂Kj with b̂’s in the interaction term, which does not involve “crossings”. All of
these contributions are the same, hence we assume thatj is contracted withk andi with
l. Thenb̂Lm is contracted witĥbMn , which givesD−1

L g̃Lmnδ
LM. NowψL,m(x)ψL,n(x)g̃Lmn ∈

S2
q,N is invariant underUq(su(2)) and therefore, proportional to the constant function. The

numerical factor can be obtained from(5.17):∫
ψL,m(x)ψL,n(x)g̃Lmn = g̃mn

L g̃Lmn = [2L+ 1]q = qdim(V L).

HereV L denotes the spinL representation ofUq(su(2)). Using
∫

1 = 4πR2, the contribu-
tion to 〈âKi âKj 〉 is

g̃Kil g̃
K
jk λ

∫
ψK,k(x)ψK,l(x)

N∑
L=0

D−1
L

1

4πR2
[2L+ 1]q

= g̃Kij
λ

4π

N∑
L=0

[2L+ 1]q
[L]q [L+ 1]q +m2R2

up to combinatorial factors of order 1. Unfortunately, this diverges linearly inN forN → ∞,
wheneverq �= 1. This is worse that forq = 1, where the divergence is only logarithmic.
This is in contrast to a result of[12], which is, however, in the context of a different concept
of (braided) QFT which does not satisfy our requirements inSection 5, and hence is not a
“smooth deformation” of ordinary QFT. The contributions from the “non-planar” tadpole
diagrams are expected to be smaller because the coassociatorφ̃ as well asR̃ are unitary.
At least for scalar field theories, this behavior could be improved by choosing another
Laplacian such as(v − v−1)/(q − q−1) which has eigenvalues [2L(L + 1)]q , wherev is
the Drinfel’d–Casimir(3.16). Then all diagrams are convergent asN → ∞. Finally, the
caseq being a root of unity is much more subtle, and we postpone it for future work.

6.3. Gauge fields

The quantization of gauge fieldsS2
q,N is less clear at present, and we will briefly indicate

two possibilities. Gauge fields were introduced in[1] as one-formsB ∈ Ω1
q,N . HereΩ1

q,N

is the subspace of one-forms in theUq(su(2))-module algebra of differential forms onS2
q,N .

It turns out that there is a basis of three independent one-formsθa which commute with all
functions onS2

q,N . It is then natural to expand the gauge fields in that basis

B =
∑

Baθ
a. (6.3)

The fact that there are three independent one-forms means that one component is essentially
radial and should be considered as a scalar field on the sphere; however, it is impossible to
find a (covariant) calculus with “tangential” forms only. Therefore, gauge theory onS2

q,N as
presented here is somewhat different from the conventional picture, but may nevertheless
be very interesting physically[29].
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Actions for gauge theories are expressions inB which involve no explicit derivative
terms. Examples are

S3 =
∫
B3, S2 =

∫
B ∗H B, S4 =

∫
B2 ∗H B2, (6.4)

where∗H is the Hodge star operator. The curvature can be defined asF = B2 − ∗HB. The
meaning of the fieldB becomes more obvious if it is written in the form

B = Θ + A, (6.5)

whereΘ ∈ Ω1
q,N is the “Dirac-operator”. WhileB andΘ become singular in the limit

N → ∞, A remains well-defined. In these variables, a more standard form of the actions
is recovered, including Yang–Mills

SYM :=
∫
F ∗H F =

∫
(dA+ A2) ∗H (dA+ A2) (6.6)

and Chern–Simons

SCS := 1

3

∫
B3 − 1

2

∫
B ∗H B = −const+ 1

2

∫
AdA+ 2

3
A3 (6.7)

terms. For further details we refer to[1].
Even though these actions (in particular the prescription “no explicit derivatives”) are

very convincing and have the correct limit atq = 1, the precise meaning of gauge invariance
is not clear. In the caseq = 1, gauge transformations have the formBa → U−1BaU for
any unitary matrixU , and actions of the above type are invariant. Forq �= 1, the integral is
a quantum trace which contains an explicit “weight factor”q−H , breaking this symmetry.
There is, however, another symmetry of the above actions whereUq(su(2)) acts on the
gauge fieldsBa as[1]

Ba → u1BaSu2 (6.8)

or equivalentlyB → u1BSu2. This can be interpreted as a gauge transformation, leaving the
actions invariant for anyu ∈ Uq(su(2)) with εq(u) = 1, and it is distinct from the rotations
of B. There is no obvious extension to a deformedU(su(N)) invariance, however. There is
yet anotherŨq(su(2)) symmetry, rotating the framesθa only, i.e. mixing the components
Ba . The rotation of the fieldB is rather complicated if expressed in terms of theBa ,
however.

The significance of all these different symmetries is not clear, and we are not able to
preserve them simultaneously at the quantum level. We will therefore indicate two possible
quantization schemes, leaving different symmetries manifest.

Quantization respecting rotation-invariance.First, we want to preserve theUq(su(2))
symmetry corresponding to rotations of the one-formsΩ1

q,N , which underlies their algebraic
properties[1]. We shall moreover impose the constraint

d ∗H B = 0,

which can be interpreted as gauge fixing. It is invariant under rotations, and removes pre-
cisely the null-modes in the Yang–Mills and Chern–Simons terms. We expand the fieldB
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into irreducible representations under this action ofUq(su(2)):

B =
∑
K,n;α

Ξα
K,n(x)b

K,n
α . (6.9)

HereΞα
K,n(x) ∈ Ω1

q,N are one-forms which are spinK representation ofUq(su(2)) (“vector
spherical harmonics”). The multiplicity is now generically 2 because of the constraint,
labeled byα.

To quantize this, we can use the same methods as inSection 5. One can either define a�
product of the coefficientsbK,nα as discussed there, or introduce the operatorsb̂K,nα acting
on a left vacuum representation. Choosing the star product approach to be specific, one can
then define correlation functions as

〈P2(b)〉 = 1

N

∫
DB e−S[B]P2(b) (6.10)

whereDB is the integral over allbK,nα , write down generating functions etc. This approach
has the merit that the remarkable solutionB = Θ of the equationF = 0 in [1] survives
the quantization, because the corresponding mode is a singlet (so thatb̂0,0

α = b0,0
α is unde-

formed). Incidentally, observe that the bracketings
∫
(BB) ∗H (BB) and

∫
B(B ∗H (BB)) in

the star-product approach are equivalent, because of(2.13).
Quantization respecting “gauge invariance”.First, notice that there is no need for

gauge fixing before quantization even forq = 1, since the group of gauge transfor-
mations is compact. To preserve the symmetry(6.8) as well as the rotation of theθa ,
we expandB into irreducible representations under these two symmetriesUq(su(2)) and
Ũq(su(2)):

B =
∑
K,n;a

ψK,n(x)θ
aβK,na . (6.11)

Nowβ
K,n
a is a spinK representation of̃Uq(su(2)) and a spin 1 representation ofUq(su(2)).

These are independent and commuting symmetries, hence the quantization will involve their
respective Drinfel’d twistsF̃ andF . In the associative approach ofSection 5we would
then introduce

β̂K,na = β
K,n′
a′ πa

′
a (F

−1
1 )πnn′(S̃F̃

−1
1 )F−1

2 F̃
−1
2 ∈ (Ũ(su(2))⊗ U(su(2)))�A.

To avoid confusion, we have used an explicit matrix notation here. The rest is formally as
before, and will be omitted. One drawback of this approach is that the above-mentioned
solutionB = Θ is somewhat obscured now: the corresponding mode is part ofβ

1,n
a ,

but not easily identified. Moreover, “overall” rotation invariance is not manifest in this
quantization.

6.4. QFT in2q + 1 dimensions, Fock space

So far, we considered two-dimensionalq-deformed Euclidean field theory. In this section,
we will add an extra (commutative) time and define a 2+ 1-dimensional scalar QFT on
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S2
q,N with manifestŨq(su(2)) × R symmetry, whereR corresponds to time translations.

This will be done using an operator approach, withq-deformed creation and anihilation
operators acting on a Fock space. The purpose is mainly to elucidate the meaning of the
Drinfel’d twists as “dressing transformations”.

We consider real scalar field operators of the form

Ψ̂ (x, t) =
∑
K,n

ψK,n(x)âK,n(t)+ ψK,n(x)∗â+
K,n(t), (6.12)

where

a
(+)
K,n(t) = U−1(t)a

(+)
K,n(0)U(t) (6.13)

for some unitary time-evolution operatorU(t) = e−iHt/�; we will again put� = 1. The
Hamilton-operatorH acts on some Hilbert spaceH. We will assume thatH is invariant
under rotations,

[H, u] = 0

whereu ∈ U(su(2)) is an operator acting onH; recall that as (operator) algebra,Ũq(su(2))
is the same asU(su(2)). Rather than attempting some kind of quantization procedure, we
shall assume that

â
(+)
K,n(t) = F̃−1

1 � a(+)K,n(t)F̃
−1
2 = a

(+)
K,m(t)π

m
n (F̃

−1
1 )F̃−1

2 (6.14)

as in(4.1), wherea(+)K,n = a
(+)
K,n(0) are ordinary creation and anihilation operators generating

a oscillator algebraA,

[aK,n, a
+
K ′,n′ ] = δKK′(gc)nn′ , [aK,n, aK ′,n′ ] = [a+

K,n, a
+
K ′,n′ ] = 0

and act on the usual Fock space10

H = ⊕(a+
K,n · · · a+

K ′,n′ |0〉). (6.15)

H is in fact a representation ofU(su(2)) � A, and the explicitU(su(2))-terms in(6.14)
are now understood as operators acting onH. Hence thêa(+)K,n(t) are some kind of dressed
creation and anihilation operators, whose equal-time commutation relations follow from
(4.7) and (4.14):

âK,nâ
+
K ′,n′ = δK,K ′gnn′ + â+

K ′,l′ âK,lR
ll ′
nn′ , â+

K,nâ
+
K ′,n′ = â+

K ′,l′ â
+
K,lR

ll ′
nn′ ,

âK,nâK ′,n′ = âK ′,l′ âK,lR
ll ′
nn′

whereâ(+)K,n = â
(+)
K,n(0). The Fock space(6.15)can equivalently be written as

H = ⊕â+K,n · · · â+K ′,n′ |0〉. (6.16)

10 Note that this is the same as the “left vacuum representation” of the subalgebra generated by thea+
K,n, in the

notation ofSection 4.
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Here the main point of our construction of a quantum group covariant field theory is most
obvious, namely that a symmetrization postulate has been implemented which restricts the
number of states in the Hilbert space as in the undeformed case. This is the meaning of the
property (4) in the introductory discussion ofSection 5. One could even exhibit a (trivial)
action of the symmetric groupSn on then-particle space, using the unitary transformation
induced by the Drinfel’d twistF , as in[14]. Moreover, using(5.45)and an analog of(5.43)
it follows that

Ψ̂ (x, t)∗ = Ψ̂ (x, t).

One can also derive the usual formulas for time-dependent perturbation theory, if we assume
that the Hamilton operator has the form

H = Hfree + V,

where

Hfree =
N∑

K=0

DK(g̃
K)nmâ+

K,nâK,m =
N∑

K=0

DK(g
K
c )

nma+
K,naK,m, (6.17)

andV may have the form

V =
∫
S2
q,N

Ψ̂ (x)Ψ̂ (x) · · · Ψ̂ (x).

Using(4.15), one can see that

[Hfree, â
+
K,l ] = DKâ

+
K,l

and similarly forâK,l . Therefore, the eigenvectors ofHfreehave the form̂a+K,n · · · â+K ′,n′ |0〉
with eigenvalues(DK + · · · +DK ′) ∈ R, and ifV = 0, then the time evolution is given as
usual by

â+
K,n(t) = e−iDKt/�â+

K,n, âK,n(t) = eiDKt/�âK,n.

One can then go to the interaction picture ifV �= 0 and derive the usual formula involving
time-ordered products. However, one must now keep the time-ordering explicit, and there
seems to be no nice formula for contractions of time-ordered products. We shall not pursue
this any further here.

The main point here is that the above definitions are entirely within the framework of
ordinary quantum mechanics, with a smooth limitq → 1 where the standard QFT on
the fuzzy sphere is recovered. Again, one could also consider the limitN → ∞ while
keepingq constant. The existence of this limit is far from trivial. Moreover, there is nothing
special about the spaceS2

q,N as opposed to other, perhaps higher-dimensionalq-deformed
spaces, except the technical simplifications because of the finite number of modes. This
shows that there is no obstacle in principle for studying deformations of QFT on such
spaces.
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Appendix A. Some proofs

Proof of Proposition 2.1. Assume thatF is minimal, so that(2.13)holds. We must show
that it can be chosen such thatF is unitary as well. Define

A := F23(1 ⊗�)F, B := F12(�⊗ 1)F,

so thatφ = B−1A. From(2.13)it follows that (∗ ⊗ ∗ ⊗ ∗)φ = φ−1, henceAA∗ = BB∗,
and more generally

f (AA∗) = f (BB∗)

for functionsf which are defined by a power series. This also implies that

Af(A∗A)A∗ = Bf(B∗B)B∗

for any suchf , hence

φf (A∗A) = f (B∗B)φ∗−1 = f (B∗B)φ.

In particular we can choosef (x) = √
x which makes sense because of(2.3), and obtain

√
B∗B

−1
φ
√
A∗A = φ. (A.1)

On the other hand, the elementT := ((∗ ⊗ ∗)F)F commutes with�(u) because(∗ ⊗
∗)�q(u) = �q(u

∗), and so does
√
T , which is well-defined inU(su(2))[[h]] sinceF =

1 + o(h). Moreover,T is symmetric, noting that

(∗ ⊗ ∗)(F21F
−1) = FF−1

21 (A.2)

which follows from the well known relation(∗ ⊗ ∗)R = R21 for q ∈ R. Therefore,T

is an admissible gauge transformation, andF ′ := F√
T

−1
is easily seen to be unitary

(this argument is due to[26]). In particular, sinceF∗F commutes with�(u), it follows
thatA∗A = (F∗

23F23)(1 ⊗ �)(F∗F) andB∗B = (F∗
12F12)(� ⊗ 1)(F∗F). Looking at

the definition(2.11), this means that the left-hand side of(A.1) is the gauge transforma-

tion of φ under a gauge transformationF → F ′ := F√
T

−1
, which makesF unitary.

Therefore, the coassociator is unchanged under this gauge transformation, hence it remains
minimal. �
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Proof of Lemma 3.2. We simply calculate

a
†
1 �(a2�a3)= (a

†
1 �a2)�a3φ̃

−1
123 = (g12 + a2�a

†
1 R̃12)�a3φ̃

−1
123

= g12a3φ̃
−1
123 + a2�(a

†
1 �a3)φ̃213R̃12φ̃

−1
123

= g12a3φ̃
−1
123 + a2�(g13 + a3�a

†
1 R̃13)φ̃213R̃12φ̃

−1
123

= g12a3φ̃
−1
123 + a2g13φ̃213R̃12φ̃

−1
123 + (a2�a3)�a

†
1 φ̃

−1
231R̃13φ̃213R̃12φ̃

−1
123

= g12a3φ̃
−1
123 + a2g31φ̃231R̃1,(23)(a2�a3)�a

†
1 R̃1,(23),

where(3.14) andg31R̃13 = g13 was used in the last step. Now the first identity(3.23)
follows immediately along these lines, omitting the inhomogeneous terms. To see the last
one(3.25), observe that

g12φ̃
−1
123 = (gc)12F

−1
1,(23)F

−1
23

becauseg12F(12),3 = g12, and similarly

g31φ̃231R̃1,(23) = (gc)13F
−1
1,(23)F

−1
23 .

This implies that

(g12a3φ̃
−1
123+a2g31φ̃231R̃1,(23))P

−
23 = ((gc)12a3+(gc)13a2)(1 − δ23

32)F
−1
1,(23)F

−1
23 = 0,

where we used the fact that the undeformed coproduct is symmetric. The second(3.24)
follows as above using

g31φ̃231R̃1,(23)g
23 = δ2

1,

or simply from(3.21). �

Proof of Proposition 4.1. Relation(4.11)follows easily from

π
j
s (u)(gc)

rs = πrl (Su)(gc)
lj . (A.3)

To prove(4.10), consider

gij âi âj = gijF−1
1 � ai(F−1

2,1F
−1
a ) � ajF−1

2,2F
−1
b

= akalg
ijπki (F

−1
1 )πlj (F

−1
2,1F

−1
a )F−1

2,2F
−1
b

= akalπ
j
n (γ

′)(gc)inπki (F
−1
1 )πlj (F

−1
2,1F

−1
a )F−1

2,2F
−1
b .

Now we useπki (F
−1
1 )(gc)

in = (gc)
krπnr (SF

−1
1 ), therefore

gij âi âj = akal(gc)
krπlr (F

−1
2,1F

−1
a γ ′SF−1

1 )F−1
2,2F

−1
b = akal(gc)

kl

because of(2.18). �
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Proof of Proposition 4.2. (4.13)follows easily from(4.10):

∂̂i (g
jkâj âk)= ∂̂i ((gc)

jkajak) = ∂nπ
n
i (F

−1
1 )F−1

2 ((gc)
jkajak)

= ∂nπ
n
i (F

−1
1 )((gc)

jkajak)F
−1
2

= 2anπ
n
i (F

−1
1 )F−1

2 + ((gc)
jkajak)∂nπ

n
i (F

−1
1 )F−1

2 = 2âi + (gjkâj âk)∂̂i

as claimed. Next, consider

∂̂i âj = ∂nπ
n
i (F

−1
1 )alπ

l
j (F

−1
2,1F

−1
a )F−1

2,2F
−1
b

= (gc)nlπ
n
i (F

−1
1 )πlj (F

−1
2,1F

−1
a )F−1

2,2F
−1
b +alπlj (F−1

2,1F
−1
a )∂nπ

n
i (F

−1
1 )F−1

2,2F
−1
b .

The second term becomesâk ∂̂lRlk
ij as in(4.7), and the first is

(gc)nlπ
n
i (F

−1
1 )πlj (F

−1
2,1F

−1
a )F−1

2,2F
−1
b

= πtl (SF
−1
1 )(gc)tiπ

l
j (F

−1
2,1F

−1
a )F−1

2,2F
−1
b = (gc)tiπ

t
j (SF

−1
1 F

−1
2,1F

−1
a )F−1

2,2F
−1
b

= (gc)tiπ
t
j (γ )=(gc)tiπtl (SF−1

1 )πlj (F
−1
2 ) = (gc)tlπ

t
i (F

−1
1 )πlj (F

−1
2 ) = gij (A.4)

using(2.17). �

Proof of Proposition 4.3. Sinceπ is a unitary representation, we have

â∗
i =F2a

∗
j π

i
j (F1) = F2ak(gc)

kjπij (F1) = F2ak(gc)
niπkn(SF1)

= alπ
l
k(F2,1)(gc)

inπkn(SF1)F2,2 = alπ
l
k(F2,1SF1)F2,2g

itπkt (γ
′−1)

= alπ
l
t (F2,1SF1γ

′−1)F2,2g
it = alπ

l
t (F

−1
1 )F−1

2 git = ât g
it

where(2.16)was essential. �
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